FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO, Maxwell GAGNON, Andrea SLEZIA, Jolien PAS, Gerwin DIJK, Mary J DONAHUE, Adam WILLIAMSON, Jennifer RAYMOND, George G MALLIARAS, Lisa GIOCOMO a Nicholas A MELOSH. NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions. AIP Advances. MELVILLE: AMER INST PHYSICS, 2024, roč. 14, č. 8, s. 1-12. ISSN 2158-3226. Dostupné z: https://dx.doi.org/10.1063/5.0216979.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions
Autoři FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO, Maxwell GAGNON, Andrea SLEZIA, Jolien PAS, Gerwin DIJK, Mary J DONAHUE, Adam WILLIAMSON (124 Kanada, domácí), Jennifer RAYMOND, George G MALLIARAS, Lisa GIOCOMO a Nicholas A MELOSH.
Vydání AIP Advances, MELVILLE, AMER INST PHYSICS, 2024, 2158-3226.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 30210 Clinical neurology
Stát vydavatele Spojené státy
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 1.600 v roce 2022
Organizační jednotka Lékařská fakulta
Doi http://dx.doi.org/10.1063/5.0216979
UT WoS 001285497400004
Klíčová slova anglicky NeuroRoots; brain machine interface; delicate brain regions
Štítky 14110132
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Tereza Miškechová, učo 341652. Změněno: 19. 8. 2024 10:26.
Anotace
Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 mu m wide and 1.5 mu m thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.
VytisknoutZobrazeno: 3. 10. 2024 23:44