2024
NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions
FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO et. al.Základní údaje
Originální název
NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions
Autoři
FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO, Maxwell GAGNON, Andrea SLEZIA, Jolien PAS, Gerwin DIJK, Mary J DONAHUE, Adam WILLIAMSON (124 Kanada, domácí), Jennifer RAYMOND, George G MALLIARAS, Lisa GIOCOMO a Nicholas A MELOSH
Vydání
AIP Advances, MELVILLE, AMER INST PHYSICS, 2024, 2158-3226
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.600 v roce 2022
Organizační jednotka
Lékařská fakulta
UT WoS
001285497400004
Klíčová slova anglicky
NeuroRoots; brain machine interface; delicate brain regions
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 19. 8. 2024 10:26, Mgr. Tereza Miškechová
Anotace
V originále
Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 mu m wide and 1.5 mu m thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.