J 2024

NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions

FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO et. al.

Základní údaje

Originální název

NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions

Autoři

FERRO, Marc D, Christopher M PROCTOR, Alexander GONZALEZ, Sriram JAYABAL, Eric ZHAO, Maxwell GAGNON, Andrea SLEZIA, Jolien PAS, Gerwin DIJK, Mary J DONAHUE, Adam WILLIAMSON (124 Kanada, domácí), Jennifer RAYMOND, George G MALLIARAS, Lisa GIOCOMO a Nicholas A MELOSH

Vydání

AIP Advances, MELVILLE, AMER INST PHYSICS, 2024, 2158-3226

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30210 Clinical neurology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.600 v roce 2022

Organizační jednotka

Lékařská fakulta

UT WoS

001285497400004

Klíčová slova anglicky

NeuroRoots; brain machine interface; delicate brain regions

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 19. 8. 2024 10:26, Mgr. Tereza Miškechová

Anotace

V originále

Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 mu m wide and 1.5 mu m thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.