J 2024

Methodological constrains of tree-ring stable isotope chronologies

AROSIO, Tito, Max TORBENSON, Tatiana BEBCHUK, Alexander KIRDYANOV, Jan ESPER et. al.

Základní údaje

Originální název

Methodological constrains of tree-ring stable isotope chronologies

Autoři

AROSIO, Tito, Max TORBENSON, Tatiana BEBCHUK, Alexander KIRDYANOV, Jan ESPER, Takeshi NAKATSUKA, Masaki SANO, Otmar URBAN, Kurt NICOLUSSI, Markus LEUENBERGER a Ulf BÜNTGEN (276 Německo, domácí)

Vydání

Quaternary Science Reviews, Elsevier Ltd, 2024, 0277-3791

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10511 Environmental sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.000 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001285833500001

Klíčová slova anglicky

Climate reconstructions; Proxy data; Stable isotopes; Spectral properties; Tree rings

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 8. 2024 11:24, Mgr. Marie Šípková, DiS.

Anotace

V originále

Tree-ring stable isotope (TRSI) chronologies that combine information from living and relict wood have the potential to capture long-term trends that might be missing in traditional tree-ring width and maximum latewood density measurements. Our understanding of the possible effects of different methods to develop TRSI chronologies is, however, still incomplete. Here, we compare and evaluate five such methods applied to three multi-millennial-long oxygen isotope (δ18O) TRSI datasets from central Europe, the European Alps and Japan: (a) raw data, (b) cohort correction, (c) interactive mean correction, (d) outlier correction, and (e) series normalization. We show that the spectral properties preserved in the final TRSI chronologies not only depend on the data used, but also on the techniques applied. Method (a) is particularly prone to outliers if the sample size is low. Method (b) may create artificial steps and trends when single measurement series share similar start dates and/or when end and start dates are systematically skewed. Methods (c) and (d) yield similar results for annually resolved data, yet (d) is more suitable for temporally pooled datasets and less sensitive to potential biological age effects. Method (e) removes any low-frequency signal. Our findings demonstrate the risks and rewards of different TRSI chronology development techniques that must be carefully adapted to both, the data used and the question posed.