2024
REHAB24-6: Physical Therapy Dataset for Analyzing Pose Estimation Methods
ČERNEK, Andrej, Jan SEDMIDUBSKÝ a Petra BUDÍKOVÁZákladní údaje
Originální název
REHAB24-6: Physical Therapy Dataset for Analyzing Pose Estimation Methods
Autoři
ČERNEK, Andrej (703 Slovensko, garant, domácí), Jan SEDMIDUBSKÝ (203 Česká republika, domácí) a Petra BUDÍKOVÁ (203 Česká republika)
Vydání
Cham, 17th International Conference on Similarity Search and Applications (SISAP), od s. 18-33, 16 s. 2024
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Organizační jednotka
Fakulta informatiky
ISBN
978-3-031-75822-5
Klíčová slova anglicky
pose estimation;motion capture;rehabilitation exercise;skeleton body model;kNN retrieval
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 25. 10. 2024 08:09, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
One of the prospective domains in remote healthcare is monitoring home physical rehabilitation using mobile phones and providing patients with real-time feedback on their exercise performance. Assessing such performance involves analyzing the similarity of spatio-temporal features extracted from human motion data. State-of-the-art research provides multiple tools for estimating human motion from mobile camera video streams. However, their applicability to physical therapy monitoring is not sufficiently explored. To address this problem, we introduce a new rehabilitation dataset (REHAB24-6), which provides untrimmed RGB videos, 2D and 3D skeletal ground truth of human motion, and temporal segmentation for six rehabilitation exercises. We also propose a novel pose transformation technique to evaluate existing 2D and 3D pose estimation methods trained on different datasets with distinct body models. Our experiments explore the current limitations of the state-of-the-art, particularly the depth estimation, and offer recommendations for selecting appropriate models. Finally, we propose similarity-based techniques to assess the ability of estimated pose sequences to discern exercise performance and report promising results of current pose detectors for rehabilitation assistance.
Návaznosti
FW09020055, projekt VaV |
| ||
MUNI/A/1590/2023, interní kód MU |
|