2024
Unraveling the mechanism and the role of hydrogen bonds in CO<sub>2</sub> capture by diluent-free amine sorbents through a combination of experimental and theoretical methods
MANCA, Gabriele, Francesco BARZAGLI, Jakub NAGY, Markéta MUNZAROVÁ, Maurizio PERUZZINI et. al.Základní údaje
Originální název
Unraveling the mechanism and the role of hydrogen bonds in CO<sub>2</sub> capture by diluent-free amine sorbents through a combination of experimental and theoretical methods
Autoři
MANCA, Gabriele, Francesco BARZAGLI, Jakub NAGY (703 Slovensko, domácí), Markéta MUNZAROVÁ (203 Česká republika, garant, domácí), Maurizio PERUZZINI a Andrea IENCO
Vydání
Fuel, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, ELSEVIER SCI LTD, 2024, 0016-2361
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.400 v roce 2022
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001301822200001
Klíčová slova anglicky
Carbon storage; CO (2) capture; Hydrogen bonds; Reaction mechanisms; Diluent-free sorbents
Štítky
Příznaky
Mezinárodní význam
Změněno: 10. 9. 2024 14:13, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
The utilization of water-lean and non-aqueous amine sorbents is regarded as an appealing approach to reduce the energy costs of CO2 capture via liquid sorbents. However, significant research is still needed to achieve the technological maturity required for industrial-scale implementation. Here, we present a detailed experimental and computational analysis at the molecular level of CO2 capture by dipropylamine (DPA) as a case study to deepen our understanding of the mechanisms governing CO2 absorption by liquid secondary amines that can be used without any additional diluent. CO2 uptake with pure DPA was investigated, and the species produced over time were determined by NMR and FT-IR spectroscopy. In particular, the NMR analysis revealed the formation of carbamic acid at high CO2/DPA ratios. A detailed DFT investigation explained the mechanism of the reaction revealing a dynamic evolution in product distribution as CO2 loading increases. At low CO2 loadings, adducts with at least four DPA molecules are formed, ultimately leading to the carbamate/ammonium ionic pair stabilized through H-bonding interactions with DPA moieties. Conversely, at higher CO2 levels some stabilizing DPA molecules of ionic pair are required for the CO2 activation, resulting in the formation of carbamic acid. A reasonable mechanism for the evolution of product distribution is provided, and the main steps of the mechanistic picture are depicted and commented on. The dependence of carbamate and carbamic acid on the availability of hydrogen bond donors and acceptors in solution is also highlighted.