J 2024

New Models for Prediction of Post-Operative Pulmonary Complications in Lung Resection Candidates

SVOBODA, Michal, Ivan ČUNDRLE, Marek PLUTINSKÝ, Pavel HOMOLKA, Ladislav MITÁŠ et. al.

Základní údaje

Originální název

New Models for Prediction of Post-Operative Pulmonary Complications in Lung Resection Candidates

Vydání

ERJ Open Research, SHEFFIELD, EUROPEAN RESPIRATORY SOC JOURNALS LTD, 2024, 2312-0541

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.600 v roce 2022

Organizační jednotka

Lékařská fakulta

UT WoS

999

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 19. 9. 2024 13:09, Mgr. Tereza Miškechová

Anotace

V originále

Introduction In recent years, ventilatory efficiency (VE/VCO2 slope) and partial pressure of end-tidal carbon dioxide (PETCO2) emerged as independent predictors of post-operative pulmonary complications (PPC). Single parameters may give only partial information regarding peri-procedural hazards. Accordingly, our aim was to create prediction models with improved ability to stratify PPC risk in patients scheduled for elective lung resection surgery. Methods This post-hoc analysis was comprised of consecutive lung resection candidates from two prior prospective trials. All individuals completed pulmonary function tests and cardiopulmonary exercise testing (CPET). Logistic regression analyses were used for identification of risk factors for PPC that were entered into the final risk prediction models. Two risk models were developed; the first used rest PETCO2 (for patients with no available CPET data), the second used VE/VCO2 slope (for patients with available CPET data). ROC analysis with the De-Long test and area under the curve (AUC) were used for comparison of models. Results The dataset from 423 patients was randomly split into the derivation (n=310) and validation (n=113) cohorts. Two final models were developed, both including sex, thoracotomy, „atypical“ resection and FEV1/FVC ratio as risk factors. In addition, the first model also included rest PETCO2, while the second model used VE/VCO2 slope from CPET. AUCs of risk scores were 0.795 (95% CI: 0.739–0.851) and 0.793 (95% CI: 0.737–0.849); both p<0.001. No differences in AUCs were found between the derivation and validation cohorts. Conclusions We created two multicomponental models for PPC risk prediction, both having excellent predictive properties.