2025
IPECAD Modeling Workshop 2023 Cross-Comparison Challenge on Cost-Effectiveness Models in Alzheimer’s Disease
HANDELS, Ron; William L. HERRING; Farzam KAMGAR; Sandar AYE; Ashley TATE et. al.Základní údaje
Originální název
IPECAD Modeling Workshop 2023 Cross-Comparison Challenge on Cost-Effectiveness Models in Alzheimer’s Disease
Autoři
HANDELS, Ron; William L. HERRING; Farzam KAMGAR; Sandar AYE; Ashley TATE; Colin GREEN; Anders GUSTAVSSON; Anders WIMO; Bengt WINBLAD; Anders SKÖLDUNGER; Lars Lau RAKET; Chelsea BEDREJO STELLICK; Eldon SPACKMAN; Jakub HLÁVKA; Yifan WEI; Javier MAR; Myriam SOTO-GORDOA; Inge DE KOK; Chiara BRÜCK; Robert ANDERSON; Peter PEMBERTON-ROSS; Michael URBICH a Linus JÖNSSON
Vydání
Value in Health, UNITED STATES, ELSEVIER SCIENCE INC, 2025, 1098-3015
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30304 Public and environmental health
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.000 v roce 2024
Organizační jednotka
Ekonomicko-správní fakulta
UT WoS
001490012200001
EID Scopus
2-s2.0-85210103561
Klíčová slova anglicky
Alzheimer’s disease; decision-analytic modeling; health-economic evaluation; cross-validation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 6. 2025 15:21, Mgr. Alžběta Karolyiová
Anotace
V originále
Objectives Decision-analytic models assessing the value of emerging Alzheimer’s disease (AD) treatments are challenged by limited evidence on short-term trial outcomes and uncertainty in extrapolating long-term patient-relevant outcomes. To improve understanding and foster transparency and credibility in modeling methods, we cross-compared AD decision models in a hypothetical context of disease-modifying treatment for mild cognitive impairment (MCI) due to AD. Methods A benchmark scenario (US setting) was used with target population MCI due to AD and a set of synthetically generated hypothetical trial efficacy estimates. Treatment costs were excluded. Model predictions (10-year horizon) were assessed and discussed during a 2-day workshop. Results Nine modeling groups provided model predictions. Implementation of treatment effectiveness varied across models based on trial efficacy outcome selection (CDR-SB, CDR-global, MMSE, FAQ) and analysis method (observed severity transitions, change from baseline, progression hazard ratio, or calibration to these). Predicted mean time in MCI ranged from 2.6-5.2 years for control strategy, and from 0.1-1.0 years for difference between intervention and control strategies. Predicted quality-adjusted life-year gains ranged from 0.0-0.6 and incremental costs (excluding treatment costs) from -USD 66,897 to USD 11,896. Conclusions Trial data can be implemented in different ways across health-economic models leading to large variation in model predictions. We recommend 1) addressing the choice of outcome measure and treatment effectiveness assumptions in sensitivity analysis, 2) a standardized reporting table for model predictions, and 3) exploring the use of registries for future AD treatments measuring long-term disease progression to reduce uncertainty of extrapolating short-term trial results by health economic models.