J 2024

A deep-learning framework for enhancing habitat identification based on species composition

LEBLANC, Cesar; Pierre BONNET; Maximilien SERVAJEAN; Milan CHYTRÝ; Svetlana ACIC et. al.

Základní údaje

Originální název

A deep-learning framework for enhancing habitat identification based on species composition

Autoři

LEBLANC, Cesar (garant); Pierre BONNET; Maximilien SERVAJEAN; Milan CHYTRÝ (203 Česká republika, domácí); Svetlana ACIC; Olivier ARGAGNON; Ariel BERGAMINI; Idoia BIURRUN; Gianmaria BONARI; Juan A CAMPOS; Andraz CARNI; Renata CUSTEREVSKA; De Sanctis MICHELE; Juergen DENGLER; Emmanuel GARBOLINO; Valentin GOLUB; Ute JANDT; Florian JANSEN; Maria LEBEDEVA; Jonathan LENOIR; Jesper Erenskjold MOESLUND; Aaron PEREZ-HAASE; Remigiusz PIELECH; Jozef SIBIK; Zvjezdana STANCIC; Angela STANISCI; Grzegorz SWACHA; Domas UOGINTAS; Kiril VASSILEV; Thomas WOHLGEMUTH a Alexis JOLY

Vydání

Applied Vegetation Science, HOBOKEN, Wiley-Blackwell, 2024, 1402-2001

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10611 Plant sciences, botany

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.000 v roce 2023

Kód RIV

RIV/00216224:14310/24:00138040

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001298764100001

EID Scopus

2-s2.0-85202490569

Klíčová slova anglicky

artificial intelligence; biodiversity monitoring; deep learning; European flora; expert system; habitat type identification; phytosociology; species composition; vascular plants; vegetation classification

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 12. 2024 15:09, Mgr. Lucie Jarošová, DiS.

Anotace

V originále

AimsThe accurate classification of habitats is essential for effective biodiversity conservation. The goal of this study was to harness the potential of deep learning to advance habitat identification in Europe. We aimed to develop and evaluate models capable of assigning vegetation-plot records to the habitats of the European Nature Information System (EUNIS), a widely used reference framework for European habitat types.LocationThe framework was designed for use in Europe and adjacent areas (e.g., Anatolia, Caucasus).MethodsWe leveraged deep-learning techniques, such as transformers (i.e., models with attention components able to learn contextual relations between categorical and numerical features) that we trained using spatial k-fold cross-validation (CV) on vegetation plots sourced from the European Vegetation Archive (EVA), to show that they have great potential for classifying vegetation-plot records. We tested different network architectures, feature encodings, hyperparameter tuning and noise addition strategies to identify the optimal model. We used an independent test set from the National Plant Monitoring Scheme (NPMS) to evaluate its performance and compare its results against the traditional expert systems.ResultsExploration of the use of deep learning applied to species composition and plot-location criteria for habitat classification led to the development of a framework containing a wide range of models. Our selected algorithm, applied to European habitat types, significantly improved habitat classification accuracy, achieving a more than twofold improvement compared to the previous state-of-the-art (SOTA) method on an external data set, clearly outperforming expert systems. The framework is shared and maintained through a GitHub repository.ConclusionsOur results demonstrate the potential benefits of the adoption of deep learning for improving the accuracy of vegetation classification. They highlight the importance of incorporating advanced technologies into habitat monitoring. These algorithms have shown to be better suited for habitat type prediction than expert systems. They push the accuracy score on a database containing hundreds of thousands of standardized presence/absence European surveys to 88.74%, as assessed by expert judgment. Finally, our results showcase that species dominance is a strong marker of ecosystems and that the exact cover abundance of the flora is not required to train neural networks with predictive performances. The framework we developed can be used by researchers and practitioners to accurately classify habitats.