J 2025

How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study

LEMMENS, Toon; Jiří ŠPONER a Miroslav KREPL

Základní údaje

Originální název

How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study

Autoři

LEMMENS, Toon (56 Belgie, domácí); Jiří ŠPONER (203 Česká republika) a Miroslav KREPL (203 Česká republika, garant)

Vydání

Journal of Chemical Information and Modeling, American Chemical Society, 2025, 1549-9596

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10610 Biophysics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.700 v roce 2023

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001396998800001

EID Scopus

2-s2.0-85215846781

Klíčová slova anglicky

RRM; Molecular Dynamics; TbRGG2; kRNA editing; Stafix

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 4. 3. 2025 15:38, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.