2025
How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study
LEMMENS, Toon; Jiří ŠPONER a Miroslav KREPLZákladní údaje
Originální název
How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study
Autoři
LEMMENS, Toon (56 Belgie, domácí); Jiří ŠPONER (203 Česká republika) a Miroslav KREPL (203 Česká republika, garant)
Vydání
Journal of Chemical Information and Modeling, American Chemical Society, 2025, 1549-9596
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.700 v roce 2023
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001396998800001
EID Scopus
2-s2.0-85215846781
Klíčová slova anglicky
RRM; Molecular Dynamics; TbRGG2; kRNA editing; Stafix
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 4. 3. 2025 15:38, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.