J 2024

Lifting query complexity to time-space complexity for two-way finite automata

ZHENG, Shenggen; Yaqiao LI; Minghua PAN; Jozef GRUSKA; Lvzhou LI et. al.

Základní údaje

Originální název

Lifting query complexity to time-space complexity for two-way finite automata

Autoři

ZHENG, Shenggen (156 Čína); Yaqiao LI; Minghua PAN; Jozef GRUSKA (703 Slovensko, domácí) a Lvzhou LI

Vydání

Journal of Computer and System Sciences, San Diego, Elsevier, 2024, 0022-0000

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 0.900

Kód RIV

RIV/00216224:14330/24:00139267

Organizační jednotka

Fakulta informatiky

UT WoS

001138384300001

EID Scopus

2-s2.0-85179893976

Klíčová slova anglicky

Quantum computing; Time-space complexity; Two-way finite automata; Communication complexity; Lifting theorems; Query algorithms

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 2. 4. 2025 00:48, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Time-space tradeoff has been studied in a variety of models, such as Turing machines, branching programs, and finite automata, etc. While communication complexity as a technique has been applied to study finite automata, it seems it has not been used to study time-space tradeoffs of finite automata. We design a new technique showing that separations of query complexity can be lifted, via communication complexity, to separations of time-space complexity of two-way finite automata. As an application, one of our main results exhibits the first example of a language L such that the time-space complexity of two-way probabilistic finite automata with a bounded error (2PFA) is ⠂⠂(n2), while of exact two-way quantum finite automata with classical states (2QCFA) is O ⠂(n5/3), that is, we demonstrate for the first time that exact quantum computing has an advantage in time-space complexity comparing to classical computing. (c) 2023 Elsevier Inc. All rights reserved.