2025
Spectroscopic characterization of phenol in frozen aqueous solution and on the ice surface
GARNCARZOVÁ, Marie; Lukáš VESELÝ; Bomi KIM; Kitae KIM; Dominik HEGER et. al.Základní údaje
Originální název
Spectroscopic characterization of phenol in frozen aqueous solution and on the ice surface
Autoři
GARNCARZOVÁ, Marie (203 Česká republika, domácí); Lukáš VESELÝ (203 Česká republika, domácí); Bomi KIM; Kitae KIM a Dominik HEGER (203 Česká republika, garant, domácí)
Vydání
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, OXFORD, Elsevier, 2025, 1386-1425
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2024
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001444878400001
EID Scopus
2-s2.0-86000360672
Klíčová slova anglicky
Freeze concentrated solution; Organic pollutants; Crystallization; Bathochromic shift; Photodegradation; Absorption spectra; Photophysics
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 6. 2025 07:37, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Phenol is one of the omnipresent pollutants in the environment, frequently detected in ambient air, water, soil, snow, and ice. Due to its low aqueous reactivity and inability to undergo direct photolysis under typical tropospheric conditions, phenol can be widely distributed and accumulated in the environment for an extended period of time. However, the reactivity of phenol can be influenced by a number of factors, including temperature, pH, and phase transitions. The present study examines the impact of the ice matrix and ice surface on the photophysical properties of phenol via UV-VIS, fluorescence, and Raman spectroscopies. We demonstrate that the freezing of an aqueous solution results in the vitrification or crystallization of the freeze-concentrated solution. The latter case is accompanied by a bathochromic shift of the absorption spectrum above 290 nm. The most pronounced red-shifts were obtained for deprotonated and crystalline samples, which suggests that direct photolysis under tropospheric conditions would be significantly enhanced in these cases. The study further demonstrates the difference in the molecular arrangement in freeze-concentrated solutions as compared to the surface of Ih ice.