2025
Beyond Occlusion: In Search for Near Real-Time Explainability of CNN-Based Prostate Cancer Classification
KREBS, Martin; Jan OBDRŽÁLEK; Vít MUSIL a Tomáš BRÁZDILZákladní údaje
Originální název
Beyond Occlusion: In Search for Near Real-Time Explainability of CNN-Based Prostate Cancer Classification
Autoři
Vydání
NEW YORK, 2025 IEEE 22nd International Symposium on Biomedical Imaging, ISBI, od s. 1-5, 5 s. 2025
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Organizační jednotka
Fakulta informatiky
ISBN
979-8-3315-2053-3
ISSN
UT WoS
001546451000151
EID Scopus
2-s2.0-105005832793
Klíčová slova anglicky
digital histopathology; prostate cancer; convolutional neural networks; explainable AI; artificial intelligence
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 1. 2026 13:49, RNDr. Vít Musil, Ph.D.
Anotace
V originále
Deep neural networks are starting to show their worth in critical applications such as assisted cancer diagnosis. However, for their outputs to get accepted in practice, the results they provide should be explainable in a way easily understood by pathologists. A well-known and widely used explanation technique is occlusion, which, however, can take a long time to compute, thus slowing the development and interaction with pathologists. In this work, we set out to find a faster replacement for occlusion in a successful system for detecting prostate cancer. Since there is no established framework for comparing the performance of various explanation methods, we first identified suitable comparison criteria and selected corresponding metrics. Based on the results, we were able to choose a different explanation method, which cut the previously required explanation time at least by a factor of 10, without any negative impact on the quality of outputs. This speedup enables rapid iteration in model development and debugging and brings us closer to adopting AI-assisted prostate cancer detection in clinical settings. We propose that our approach to finding the replacement for occlusion can be used to evaluate candidate methods in other related applications.
Návaznosti
| 101079183, interní kód MU |
| ||
| 90140, velká výzkumná infrastruktura |
|