2025
Strojové učení v digitální patologii
BRÁZDIL, Tomáš; Vít MUSIL; Karel ŠTĚPKA; Adam KUKUČKA; Rudolf NENUTIL et al.Základní údaje
Originální název
Strojové učení v digitální patologii
Název anglicky
Machine learning in digital pathology
Autoři
Vydání
Ceskoslovenska Patologie, Nakladatelske Stredisko CLSJE Purkyne, 2025, 0009-0611
Další údaje
Jazyk
čeština
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Organizační jednotka
Fakulta informatiky
Příznaky
Recenzováno
Změněno: 5. 1. 2026 14:09, RNDr. Vít Musil, Ph.D.
V originále
S postupující digitalizací patologie se do popředí zájmu dostávají i aplikace metod strojového učení a umělé inteligence. Výzkum a vývoj vtéto oblasti je velmi rychlý, ale aplikace učících systémů v klinické praxi stále zaostávají. Cílem tohoto textu je přiblížit proces tvorby a nasazení učících systémů v digitální patologii. Začneme popisem základních vlastností dat produkovaných v rámci digitální patologie. Konkrétně pojednáme o skenerech a skenování vzorků, o ukládání a přenosu dat, o kontrole jejich kvality a přípravě pro zpracování pomocí učících systémů, zejména o anotacích. Naším cílem je prezentovat aktuální přístupy k řešení technických problémů a zároveň upozornit na úskalí, na která lze narazit při zpracování dat z digitální patologie. V první části také naznačíme, jak vypadají aktuální softwarová řešení pro prohlížení naskenovaných vzorků a implementace diagnostických postupů zahrnujících učící systémy. Ve druhé části textu popíšeme obvyklé úlohy digitální patologie a naznačíme obvyklé přístupy k jejich řešení. V této části zejména vysvětlíme, jak je nutné modifikovat standardní metody strojového učení pro zpracování velkých skenů a pojednáme o konkrétních aplikacích v diagnostice. Na závěr textu poskytneme rychlý náhled dalšího možného vývoje učících systémů v digitální patologii. Zejména ilustrujeme podstatu přechodu na velké základní modely a naznačíme problematiku virtuálního barvení vzorků. Doufáme, že tento text přispěje k lepší orientaci v rapidně se vyvíjející oblasti strojového učení v digitální patologii a tím přispěje k rychlejší adopci učících metod v této oblasti.
Anglicky
With the advancing digitalization of pathology, the application of machine learning and artificial intelligence methods is becoming increasingly important. Research and development in this field are progressing rapidly, but the clinical implementation of learning systems still lags behind. The aim of this text is to provide an overview of the process of developing and deploying learning systems in digital pathology. We begin by describing the fundamental characteristics of data produced in digital pathology. Specifically, we discuss scanners and sample scanning, data storage and transmission, quality control, and preparation for processing by learning systems, with a particular focus on annotations. Our goal is to present current approaches to addressing technical challenges while also highlighting potential pitfalls in processing digital pathology data. In the first part of the text, we also outline existing software solutions for viewing scanned samples and implementing diagnostic procedures that incorporate learning systems. In the second part of the text, we describe common tasks in digital pathology and outline typical approaches to solving them. Here, we explain the necessary modifications to standard machine learning methods for processing large scans and discuss specific diagnostic applications. Finally, we provide a brief overview of the potential future development of learning systems in digital pathology. We illustrate the transition to large foundational models and introduce the topic of virtual staining of samples. We hope that this text will contribute to a better understanding of the rapidly evolving field of machine learning in digital pathology and, in turn, facilitate the faster adoption of learning-based methods in this domain.