J 2001

On decaying solutions for functional differential equations with p-Laplacian

DOŠLÁ, Zuzana, M. CECCHI and M. MARINI

Basic information

Original name

On decaying solutions for functional differential equations with p-Laplacian

Authors

DOŠLÁ, Zuzana, M. CECCHI and M. MARINI

Edition

Nonlinear Analysis, Holandsko, Elsevier Science Ltd. 2001, 0362-546X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.406

RIV identification code

RIV/00216224:14310/01:00004862

Organization unit

Faculty of Science

UT WoS

000173223100007

Keywords in English

functional differential equations; deviating argument; decaying solution; oscillatory solution
Změněno: 4/12/2001 15:39, prof. RNDr. Zuzana Došlá, DSc.

Abstract

V originále

We study the existence of monotone solutions approaching zero as t tends to infinity of functional differential equation with one-dimensional p-Laplacian. Jointly with the monotone properties of nonoscillatory solutions some results about the qualitative behavior of oscillatory solutions are given too. Relationships between the case without deviating argument and the functional one, enlightening both similarities and differences, are treated as well.

Links

GA201/99/0295, research and development project
Name: Kvalitativní teorie diferenciálních rovnic
Investor: Czech Science Foundation, Qualitative theory of differential equations