J 2002

Class Number Parity of a Compositum of Five Quadratic Fields

BULANT, Michal

Basic information

Original name

Class Number Parity of a Compositum of Five Quadratic Fields

Authors

BULANT, Michal (203 Czech Republic, guarantor)

Edition

Acta Math. et Informatica Univ. Ostraviensis, Ostrava (CZ), 2002, 1211-4774

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14310/02:00006776

Organization unit

Faculty of Science

Keywords in English

class number; cyclotomic unit; crossed homomorphism
Změněno: 13/5/2003 11:23, Mgr. Michal Bulant, Ph.D.

Abstract

V originále

In this paper we show that the class number of the field $Q(\sqrt p,\sqrt q,\sqrt r,\sqrt s,\sqrt t)$ is even for $p,q,r,s,t$ being different primes either equal to 2 or congruent to 1 modulo 4. This result is based on our previous results about the parity of the class number in the case of the field $Q{\sqrt p,\sqrt q,\sqrt r}$.

Links

GA201/01/0471, research and development project
Name: Algebraické, analytické a kombinatorické metody teorie čísel
Investor: Czech Science Foundation, Algebraic, analytic and combinatorial methods of number theory