2002
Artificial neural networks for modeling electrophoretic mobilities of inorganic cations and organic cationic oximes used as antidote contra nerve paralytic chemical weapons
MALOVANÁ, Sabina, Borges FRIAS GARCIA a Josef HAVELZákladní údaje
Originální název
Artificial neural networks for modeling electrophoretic mobilities of inorganic cations and organic cationic oximes used as antidote contra nerve paralytic chemical weapons
Autoři
MALOVANÁ, Sabina (203 Česká republika), Borges FRIAS GARCIA (724 Španělsko) a Josef HAVEL (203 Česká republika, garant)
Vydání
ELECTROPHORESIS, WEINHEIM, WILEY-V C H VERLAG GMBH, 2002, 0173-0835
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10406 Analytical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.325
Kód RIV
RIV/00216224:14310/02:00007968
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000176857000007
Klíčová slova anglicky
Artificial neural networks; cationic oximes; antidote contra nerve paralytic chemical weapons
Změněno: 2. 6. 2003 13:10, prof. RNDr. Josef Havel, DrSc.
Anotace
V originále
Electrophoretic mobility of various analytes can be modeled and thus also predicted using artificial neural networks (ANNs) evaluating experiments done according to a suitable experimental design. in contrast to response surfaces modeling which can be used to predict optimal separation conditions, ANNs combined with experimental design were shown to be efficient for modeling and prediction of optimal separation conditions, while no explicit model and any knowledge of the physicochemical constants is needed. Methodology has been developed and demonstrated on separation of inorganic cations and organic oximes while various additives (methanol, complexation agent), pH or buffer concentration were followed. In our approach proposed the number of experiments necessary to find optimal separation conditions can be reduced significantly.
Návaznosti
GA203/02/1103, projekt VaV |
|