MUSILOVÁ, Pavla and Jana MUSILOVÁ. Differential Invariants of Immersions of Manifolds with Metric Fields. Communications in Mathematical Physics. Heidelberg: Springer-Verlag, 2004, vol. 249, No 2, p. 319-329. ISSN 0010-3616.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Differential Invariants of Immersions of Manifolds with Metric Fields
Name in Czech Diferenciální invarianty z vnoření variet s metrickými poli
Authors MUSILOVÁ, Pavla (203 Czech Republic, guarantor) and Jana MUSILOVÁ (203 Czech Republic).
Edition Communications in Mathematical Physics, Heidelberg, Springer-Verlag, 2004, 0010-3616.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10301 Atomic, molecular and chemical physics
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 1.741
RIV identification code RIV/00216224:14310/04:00010215
Organization unit Faculty of Science
UT WoS 000222914800005
Keywords (in Czech) hladké variety; diferenciální invarianty
Keywords in English smooth manifolds; differential invariants
Tags differential invariants, smooth manifolds
Tags International impact, Reviewed
Changed by Changed by: prof. RNDr. Jana Musilová, CSc., učo 851. Changed: 23/6/2009 22:55.
Abstract
The problem of finding all r-th order differential invariants of immersions of manifolds with metric fields, with values in a left (G^1_m x G^1_n)-manifold is formulated. For obtaining the basis of higher order differential invariants the orbit reduction method is used. As a new result it appears that r-th order differential invariants depending on an immersion f:M->N of manifolds M and N and on metric fields on them can be factorized through metrics, curvature tensors and their covariant derivatives up to the order (r-2), and covariant differentials of the tangent mapping Tf up to the order r. The concept of a covariant differential Tf is also introduced in this paper. The obtained results are geometrically interpreted as well.
Abstract (in Czech)
Je formulován problém nalezení všech diferenciálních invariantů r-tého řádu z vnoření variet s metrickými poli, s hodnotami v levé (G^1_m x G^1_n)-varietě. Báze invariantů je získána pomocé metody redukce orbit. Jako nový výsledek je dokázáno, že diferenciální invarianty r-tého řádu z vnoření f:M->N variet M a N s metrickými poli lze faktorizovet vzhledem k metrikám, křivostem a jejich kovarintním rerivacím do řádu (r-2) a kovariantnímu diferenciálu tečného zobrazení Tf do řádu r. poslední pojem je v práci nově zaveden. Získané výsledky jsou interpretovány geometricky.
Links
GA201/03/0512, research and development projectName: Geometrická analýza a její aplikace ve fyzice
Investor: Czech Science Foundation, Geometric analysis and its applications in physics
MSM 143100006, plan (intention)Name: Kvantová teorie pole, teorie strun, kvantová teorie gravitace
Investor: Ministry of Education, Youth and Sports of the CR, Quantum Field Theory, String Theory, Quantum Theory of Gravity
PrintDisplayed: 10/10/2024 21:55