2004
Molecular dynamics simulations of guanine quadruplex loops:Advances and force field limitations
FADRNÁ, Eva; Naděžda ŠPAČKOVÁ; Richard ŠTEFL; Jaroslav KOČA; Thomas E. CHEATHAM et. al.Základní údaje
Originální název
Molecular dynamics simulations of guanine quadruplex loops:Advances and force field limitations
Název česky
MD simulace quaninového kvadruplexu
Autoři
FADRNÁ, Eva (203 Česká republika, garant); Naděžda ŠPAČKOVÁ (203 Česká republika); Richard ŠTEFL (203 Česká republika); Jaroslav KOČA (203 Česká republika); Thomas E. CHEATHAM (840 Spojené státy) a Jiří ŠPONER (203 Česká republika)
Vydání
Biophysical Journal, Bethesda, USA, Biophysical Society, 2004, 0006-3495
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.585
Kód RIV
RIV/00216224:14310/04:00010228
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000222492800022
Klíčová slova anglicky
molecular dynamics; G-DNA; free energy calculations; DNA loop geometries; LES; force fields
Změněno: 26. 1. 2007 14:58, prof. Mgr. Richard Štefl, Ph.D.
V originále
A computational analysis of d(GGGGTTTTGGGG)2 guanine quadruplexes containing both lateral and diagonal four-thymidine loops was carried out using Molecular Dynamics (MD) simulations in explicit solvent, Locally Enhanced Sampling (LES) simulations, systematic conformational search, and free energy Molecular Mechanics, Poisson Boltzmann, Surface Area calculations with explicit inclusion of structural monovalent cations. The study provides, within the approximations of the applied all-atom additive force field, a qualitatively complete analysis of the available loop conformational space. The results are independent of the starting structures. Major conformational transitions not seen in conventional MD simulations are observed when LES is applied. The favored LES structures consistently provide lower free energies (as estimated by MM-PBSA) than other structures. Unfortunately, the predicted optimal structure for the diagonal loop arrangement differs substantially from the atomic resolution experiments. This result is attributed to force field deficiencies, such as the potential misbalance between solute cation and solvent cation terms. The MD simulations are unable to maintain stable coordination of the monovalent cations inside the diagonal loops reported in recent X-ray study. The optimal diagonal and lateral loop arrangements appear to be close in energy though a proper inclusion of the loop monovalent cations could stabilize the diagonal architecture.
Česky
MD simulace quaninového kvadruplexu
Návaznosti
LN00A016, projekt VaV |
| ||
MSM 143100005, záměr |
|