2003
Functional genomics as a tool to study pathogenic spirochetes
ŠMAJS, DavidZákladní údaje
Originální název
Functional genomics as a tool to study pathogenic spirochetes
Název česky
Funkční genomika jako nástroj pro studium patogenních spirochet
Název anglicky
Functional genomics as a tool to study pathogenic spirochetes
Autoři
ŠMAJS, David (203 Česká republika, garant)
Vydání
2003. vyd. Brno, Abstrakta XVII Biological Days - Memory in living systems, s. 18-18, 2003
Nakladatel
Československá biologická společnost a Biologický ústav
Další údaje
Jazyk
čeština
Typ výsledku
Stať ve sborníku
Obor
Genetika a molekulární biologie
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14110/03:00012313
Organizační jednotka
Lékařská fakulta
ISBN
80-210-3264-2
Klíčová slova anglicky
functional genomics; pathogenic spirochetes
Změněno: 31. 5. 2005 11:04, prof. MUDr. David Šmajs, Ph.D.
V originále
Methods of functional genomics are discussed as experimental tools to study unculturable bacterial pathogens including Treponema pallidum, the causative agent of syphilis. Functional screening of a large insert T. pallidum DNA library in E. coli using a BAC cloning system can be used for screening of gene functions governed by heterologous (T. pallidum) chromosomal DNA. T. pallidum DNA-microarray- and real-time quantitative PCR-based transcriptome analyses, utilizing organisms extracted from rabbit testicular tissue and skin lesions during infection and from bacteria isolated from time-limited in vitro tissue cultures, appear to be powerful techniques in the study of gene expression levels. Results from these studies may be useful in identifying factors that limit the multiplication of T. pallidum in vitro and thus could lead to the improvement of in vitro culture techniques. Cloning and expression of the T. pallidum proteome permits a systematic evaluation of antigenicity of T. pallidum proteins. Moreover, binding interactions using two-hybrid approaches can be examined to generate large-scale protein-protein interaction maps. Whole-genome strain comparisons performed on DNA-microarrays and XL-PCR-based genome fingerprints are used to reveal genetic differences resulting in different clinical manifestations of treponemal diseases. The genome of closely related nonpathogenic T. paraluiscuniculi is used to identify genes (missing in T. paraluiscuniculi but present in T. pallidum genome) involved in the human infections. These genes are likely to code for important virulence factors and constitute promising targets for prevention/therapy.
Anglicky
Methods of functional genomics are discussed as experimental tools to study unculturable bacterial pathogens including Treponema pallidum, the causative agent of syphilis. Functional screening of a large insert T. pallidum DNA library in E. coli using a BAC cloning system can be used for screening of gene functions governed by heterologous (T. pallidum) chromosomal DNA. T. pallidum DNA-microarray- and real-time quantitative PCR-based transcriptome analyses, utilizing organisms extracted from rabbit testicular tissue and skin lesions during infection and from bacteria isolated from time-limited in vitro tissue cultures, appear to be powerful techniques in the study of gene expression levels. Results from these studies may be useful in identifying factors that limit the multiplication of T. pallidum in vitro and thus could lead to the improvement of in vitro culture techniques. Cloning and expression of the T. pallidum proteome permits a systematic evaluation of antigenicity of T. pallidum proteins. Moreover, binding interactions using two-hybrid approaches can be examined to generate large-scale protein-protein interaction maps. Whole-genome strain comparisons performed on DNA-microarrays and XL-PCR-based genome fingerprints are used to reveal genetic differences resulting in different clinical manifestations of treponemal diseases. The genome of closely related nonpathogenic T. paraluiscuniculi is used to identify genes (missing in T. paraluiscuniculi but present in T. pallidum genome) involved in the human infections. These genes are likely to code for important virulence factors and constitute promising targets for prevention/therapy.
Návaznosti
NI7351, projekt VaV |
|