J 2006

Current Algebra of the Pure Spinor Superstring in AdS(5) x S(5)

KLUSOŇ, Josef and Massimo BIANCHI

Basic information

Original name

Current Algebra of the Pure Spinor Superstring in AdS(5) x S(5)

Name in Czech

Algebra toku pro pure spinorovou strunu v Ads_5x S(5)

Authors

KLUSOŇ, Josef (203 Czech Republic, guarantor) and Massimo BIANCHI (380 Italy)

Edition

Journal of High Energy Physics, CERN, 2006, 1126-6708

Other information

Language

English

Type of outcome

Article in a journal

Field of Study

10301 Atomic, molecular and chemical physics

Country of publisher

Czech Republic

Confidentiality degree

is not subject to a state or trade secret

Impact factor

Impact factor: 5.393

RIV identification code

RIV/00216224:14310/06:00017957

Organization unit

Faculty of Science

UT WoS

000240460800030

Keywords in English

string theory- cft

Tags

International impact, Reviewed
Changed: 2/4/2010 18:51, doc. Mgr. Josef Klusoň, Ph.D., DSc.

Abstract

In the original language

We perform a Hamiltonian analysis of the classical type IIB superstring on AdS(5) x S(5) in the pure spinor approach. Taking the spatial components of the left-invariant (super)currents and the pure spinor ghosts as canonical variables, we compute the classical graded Poisson brackets of the currents and ghosts and identify the first class constraints associated to the local SO(4,1) x SO(5) symmetry and the pure spinor condition. We then study the properties of the BRST generators and the Hamiltonian along the constraints. For a natural choice of the the Lagrange multipliers, we show equivalence of the canonical equations of motion with the covariant ones. Finally we briefly discuss the (non) local currents, including the ghost contribution, that generate the global PSU(2,2|4) symmetry and its Yangian extension in the present framework.

In Czech

V tomto článku formulujeme Hamiltonovský přístup k čistě spinorové superstruně na pozadí AdS(5)xS(5). Spočítáme algebru Poissnových závorek mezi různými toky, které definují danou teorii.

Links

MSM0021622409, plan (intention)
Name: Matematické struktury a jejich fyzikální aplikace
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures and their physical applications