J 2005

Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines

SPANILÁ, Miroslava, Jiří PAZOUREK, Marta FARKOVÁ a Josef HAVEL

Základní údaje

Originální název

Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines

Název česky

Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines

Autoři

SPANILÁ, Miroslava (203 Česká republika), Jiří PAZOUREK (203 Česká republika, garant), Marta FARKOVÁ (203 Česká republika) a Josef HAVEL (203 Česká republika)

Vydání

J. Chromatogr. A. Amsterdam (The Netherlands), Elsevier Science, 2005, 0021-9606

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10406 Analytical chemistry

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 3.138

Kód RIV

RIV/00216224:14330/05:00020146

Organizační jednotka

Fakulta informatiky

UT WoS

000230862600026

Klíčová slova anglicky

Solid-phase extraction; Artificial neural networks; Experimental design; Single variable approach; Multivariable approach; Capillary electrophoresis; trans-resveratrol

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 6. 7. 2007 09:40, RNDr. JUDr. Vladimír Šmíd, CSc.

Anotace

V originále

Solid-phase extraction (SPE) is often used for preconcentration of analytes from biological samples. Such an analytical step requires optimization for obtaining reliable results. Optimization in analytical chemistry is traditionally still often done with relaxation method, when an optimal value of a single variable is searched for (single variable approach, SVA). Nowadays, using artificial neural networks (ANN) as a multivariable approach (MVA) in optimization is rapidly expanding. In this work, the optimization of SPE using relaxation method (SVA) and optimization by ANN in combination with experimental design (MVA) are compared and the latter approach is practically illustrated. Advantages of MVA over SVA for optimization are discussed. The prediction of the optimal SPE conditions for determination cis- and trans-resveratrol in Australian wines by capillary zone electrophoresis is described and the improvement of efficiency of SPE using MVA is confirmed.

Česky

Solid-phase extraction (SPE) is often used for preconcentration of analytes from biological samples. Such an analytical step requires optimization for obtaining reliable results. Optimization in analytical chemistry is traditionally still often done with relaxation method, when an optimal value of a single variable is searched for (single variable approach, SVA). Nowadays, using artificial neural networks (ANN) as a multivariable approach (MVA) in optimization is rapidly expanding. In this work, the optimization of SPE using relaxation method (SVA) and optimization by ANN in combination with experimental design (MVA) are compared and the latter approach is practically illustrated. Advantages of MVA over SVA for optimization are discussed. The prediction of the optimal SPE conditions for determination cis- and trans-resveratrol in Australian wines by capillary zone electrophoresis is described and the improvement of efficiency of SPE using MVA is confirmed.

Návaznosti

GA203/02/1103, projekt VaV
Název: Umělé neuronové sítě a plánování pokusů v analytické chemii, zejména v separačních metodách
Investor: Grantová agentura ČR, Umělé neuronové sítě a plánování pokusů v analytické chemii, zejména v separačních metodách