BOTTE, Cyrille, Charlotte JEANNEAU, Lenka ŠNAJDROVÁ, Olivier BASTIEN, Anne IMBERTY, Christelle BRETON and Eric MARECHAL. Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol synthase reveal critical residues for activity. J. Biol. Chem. 2005, vol. 280, No 41, p. 34691-34701. ISSN 0021-9258.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol synthase reveal critical residues for activity
Name in Czech Molekulové modelování a místně cílená mutageneze MDGD synthasy rostlinného chloroplastu odhalují rezidua nezbytná pro její aktivitu
Authors BOTTE, Cyrille (250 France), Charlotte JEANNEAU (250 France), Lenka ŠNAJDROVÁ (250 France, guarantor), Olivier BASTIEN (250 France), Anne IMBERTY (250 France), Christelle BRETON (250 France) and Eric MARECHAL (250 France).
Edition J. Biol. Chem. 2005, 0021-9258.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10600 1.6 Biological sciences
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 5.854
RIV identification code RIV/00216224:14110/05:00020163
Organization unit Faculty of Medicine
UT WoS 000232403900039
Keywords in English glycosyltransferases; molecular modeling; MDGD synthase
Tags glycosyltransferases, MDGD synthase, molecular modeling
Changed by Changed by: Mgr. Lenka Šnajdrová, Ph.D., učo 14128. Changed: 16/2/2007 15:04.
Abstract
Monogalactosyldiacylglycerol (MGDG), the major lipid of plant and algal plastids, is synthesized by MGD (or MGDG synthase), a dimeric and membrane-bound glycosyltransferase of the plastid envelope that catalyzes the transfer of a galactosyl group from a UDP-galactose donor onto a diacylglycerol acceptor. Although this enzyme is essential for biogenesis, and therefore an interesting target for herbicide design, no structural information is available. MGD monomers share sequence similarity with MURG, a bacterial glycosyltransferase catalyzing the transfer of N-acetyl-glucosamine on Lipid 1. Using the x-ray structure of Escherichia coli MURG as a template, we computed a model for the fold of Spinacia oleracea MGD. This structural prediction was supported by site-directed mutagenesis analyses. The predicted monomer architecture is a double Rossmann fold. The binding site for UDP-galactose was predicted in the cleft separating the two Rossmann folds. Two short segments of MGD (beta2-alpha2 and beta6-beta7 loops) have no counterparts in MURG, and their structure could not be determined. Combining the obtained model with phylogenetic and biochemical information, we collected evidence supporting the beta2-alpha2 loop in the N-domain as likely to be involved in diacylglycerol binding. Additionally, the monotopic insertion of MGD in one membrane leaflet of the plastid envelope occurs very likely at the level of hydrophobic amino acids of the N-terminal domain.
Abstract (in Czech)
Monogalaktosyldiacylglycerol (MGDG), hlavní složka rostlinných plastidů, je syntetizován MGDG synthasou (MGD) - glykosyltransferasou přítomnou v membráně plastidu, která katalyzuje přenos galaktosylové skupiny z UDP-galaktosy (donor) na diacylglycerol (akceptor). Zatím není dostupná žádná strukturní informace o tomto důležitém enzymu, který je vhodným cílem pro design herbicidů. S pomocí metod homologního modelování v této práci představujeme model MGDG synthasy ze špenátu, který byl vytvořen podle analogie s proteinem MURG z Escherichia coli, jehož rentgenová struktura je známa.
Links
GD204/03/H016, research and development projectName: Strukturní biofyzika makromolekul
Investor: Czech Science Foundation, Structural biophysics of macromolecules
MSM0021622413, plan (intention)Name: Proteiny v metabolismu a při interakci organismů s prostředím
Investor: Ministry of Education, Youth and Sports of the CR, Proteins in metabolism and interaction of organisms with the environment
PrintDisplayed: 7/5/2024 06:53