2007
An overview of snow photochemistry: evidence, mechanisms and impacts
GRANNAS, A. M., A. E. JONES, J. DIBB, M. AMMAN, C. ANASTASIO et. al.Základní údaje
Originální název
An overview of snow photochemistry: evidence, mechanisms and impacts
Název česky
Fotochemie ve sněhu: důkaz, mechanismus a důsledky
Autoři
GRANNAS, A. M. (840 Spojené státy), A. E. JONES (826 Velká Británie a Severní Irsko), J. DIBB (840 Spojené státy), M. AMMAN (756 Švýcarsko), C. ANASTASIO (840 Spojené státy), H. J. BEINE (380 Itálie), M. BERGIN (840 Spojené státy), J. BOTTENHEIM (124 Kanada), C. S. BOXE (840 Spojené státy), G. CARVER (826 Velká Británie a Severní Irsko), G. CHEN (840 Spojené státy), J. H. CRAWFORD (840 Spojené státy), F. DOMINE (250 Francie), M. M. FREY (840 Spojené státy), M. I. GUZMAN (840 Spojené státy), D. E. HEARD (826 Velká Británie a Severní Irsko), D. HELMIG (840 Spojené státy), M. R. HOFFMANN (840 Spojené státy), R. E. HONRATH (840 Spojené státy), L. G. HUEY (840 Spojené státy), M. HUTTERLI (826 Velká Británie a Severní Irsko), H. W. JACOBI (276 Německo), Petr KLÁN (203 Česká republika, garant), B. LEFER (840 Spojené státy), J. MCCONNELL (124 Kanada), J. PLANE (826 Velká Británie a Severní Irsko), R. SANDER (276 Německo), J. SAVARINO (380 Itálie), P. B. SHEPSON (840 Spojené státy), W. R. SIMPSON (840 Spojené státy), J. R. SODEAU (372 Irsko), R. VON GLASOW (826 Velká Británie a Severní Irsko), R. WELLER (276 Německo), E. W. WOLFF (826 Velká Británie a Severní Irsko) a T. ZHU (156 Čína)
Vydání
Atmospheric Chemistry and Physics Discussions, Strasbourg, France, European Geosciences Union, 2007, 1680-7316
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10401 Organic chemistry
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.865
Kód RIV
RIV/00216224:14310/07:00020318
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000249072900013
Klíčová slova anglicky
Photochemistry; snow; review
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 6. 2009 15:12, prof. RNDr. Petr Klán, Ph.D.
V originále
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated 5 species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due 10 to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which 15 has been proposed to be either direct or indirect photooxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to 20 atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
Česky
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated 5 species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due 10 to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which 15 has been proposed to be either direct or indirect photooxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to 20 atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
Návaznosti
GA205/05/0819, projekt VaV |
| ||
MSM0021622412, záměr |
|