D 2007

A Comparison of Fast Level Set-Like Algorithms for Image Segmentation in Fluorescence Microscopy

MAŠKA, Martin, Jan HUBENÝ, David SVOBODA and Michal KOZUBEK

Basic information

Original name

A Comparison of Fast Level Set-Like Algorithms for Image Segmentation in Fluorescence Microscopy

Name in Czech

Porovnání rychlých aproximací Level Set metody pro segmentaci obrazu ve fluorescenční mikroskopii

Authors

MAŠKA, Martin (203 Czech Republic, guarantor, belonging to the institution), Jan HUBENÝ (203 Czech Republic, belonging to the institution), David SVOBODA (203 Czech Republic, belonging to the institution) and Michal KOZUBEK (203 Czech Republic, belonging to the institution)

Edition

Berlin, Heidelberg, 3rd International Symposium on Visual Computing, p. 571-581, 11 pp. 2007

Publisher

Spinger-Verlag

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/07:00022769

Organization unit

Faculty of Informatics

ISBN

978-3-540-76855-5

UT WoS

000251785200056

Keywords in English

image segmentation; level set method; active contours

Tags

International impact, Reviewed
Změněno: 13/12/2015 02:07, doc. RNDr. Martin Maška, Ph.D.

Abstract

V originále

Image segmentation, one of the fundamental task of image processing, can be accurately solved using the level set framework. However, the computational time demands of the level set methods make them practically useless, especially for segmentation of large threedimensional images. Many approximations have been introduced in recent years to speed up the computation of the level set methods. Although these algorithms provide favourable results, most of them were not properly tested against ground truth images. In this paper we present a comparison of three methods: the Sparse-Field method [1], Deng and Tsui's algorithm [2] and Nilsson and Heyden's algorithm [3]. Our main motivation was to compare these methods on 3D image data acquired using fluorescence microscope, but we suppose that presented results are also valid and applicable to other biomedical images like CT scans, MRI or ultrasound images. We focus on a comparison of the method accuracy, speed and ability to detect several objects located close to each other for both 2D and 3D images. Furthermore, since the input data of our experiments are artificially generated, we are able to compare obtained segmentation results with ground truth images.

In Czech

Segmentaci obrazu, jednu ze základních úloh zpracování obrazu, lze přesně řešit pomocí Level Set metody.

Links

LC535, research and development project
Name: Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
Investor: Ministry of Education, Youth and Sports of the CR, Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
MSM0021622419, plan (intention)
Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems
2B06052, research and development project
Name: Vytipování markerů, screening a časná diagnostika nádorových onemocnění pomocí vysoce automatizovaného zpracování multidimenzionálních biomedicínských obrazů (Acronym: Biomarker)
Investor: Ministry of Education, Youth and Sports of the CR, Determination of markers, screening and early diagnostics of cancer diseases using highly automated processing of multidimensional biomedical images