2007
Advanced learning techniques for NLP
POPELÍNSKÝ, LubomírZákladní údaje
Originální název
Advanced learning techniques for NLP
Název česky
Pokročilé metody učení pro zpracování přirozeného jazyka
Název anglicky
Advanced learning techniques for NLP
Autoři
POPELÍNSKÝ, Lubomír (203 Česká republika, garant, domácí)
Vydání
8th summer school of the European Masters in Language and Speech, 2007
Další údaje
Jazyk
čeština
Typ výsledku
Vyžádané přednášky
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14330/07:00041849
Organizační jednotka
Fakulta informatiky
Klíčová slova anglicky
machine learning; inductive logic programming; natural language processing
Příznaky
Mezinárodní význam
Změněno: 3. 5. 2011 06:50, doc. RNDr. Lubomír Popelínský, Ph.D.
V originále
Inductive logic programing (ILP) aims at learning first-order predicate formula from positive and maybe negative examples. This learning technique is not limited to single-table data (like most of other learning method) and is especially suitable for data of complex structure. ILP has been successful in part-of-speech tagging (English, Swedish, Spanish, Czech), error detection in a morphologically tagged Czech corpus, in text categorization and information extraction. The aim of the tutorial is to provide the participants with practical usage of ILP for several NLP tasks. Summary A brief overview of ILP ILP for Part-of-Speech Tagging. A case studies: POS tagging for English; Error detection in a Czech corpus ILP for Text filtering and Information Extraction A case studies: Filtering situations and action from news reports; Learning agent-target from biomedical texts First-order frequent patterns and association rules for NLP
Anglicky
Inductive logic programing (ILP) aims at learning first-order predicate formula from positive and maybe negative examples. This learning technique is not limited to single-table data (like most of other learning method) and is especially suitable for data of complex structure. ILP has been successful in part-of-speech tagging (English, Swedish, Spanish, Czech), error detection in a morphologically tagged Czech corpus, in text categorization and information extraction. The aim of the tutorial is to provide the participants with practical usage of ILP for several NLP tasks. Summary A brief overview of ILP ILP for Part-of-Speech Tagging. A case studies: POS tagging for English; Error detection in a Czech corpus ILP for Text filtering and Information Extraction A case studies: Filtering situations and action from news reports; Learning agent-target from biomedical texts First-order frequent patterns and association rules for NLP