J 2007

dRAP-Independent: A Data Distribution Algorithm for Mining First-Order Frequent Patterns

BLAŤÁK, Jan a Lubomír POPELÍNSKÝ

Základní údaje

Originální název

dRAP-Independent: A Data Distribution Algorithm for Mining First-Order Frequent Patterns

Název česky

dRAP-Independent: A Data Distribution Algorithm for Mining First-Order Frequent Patterns

Název anglicky

dRAP-Independent: A Data Distribution Algorithm for Mining First-Order Frequent Patterns

Autoři

BLAŤÁK, Jan (203 Česká republika) a Lubomír POPELÍNSKÝ (203 Česká republika, garant)

Vydání

Computing and Informatics, Bratislava, 2007, 1335-9150

Další údaje

Jazyk

čeština

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.349

Kód RIV

RIV/00216224:14330/07:00023860

Organizační jednotka

Fakulta informatiky

UT WoS

000247846400008

Klíčová slova anglicky

data mining; inductive logic programming; frequent patterns; distributed data mining

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 10. 2. 2008 16:55, doc. RNDr. Lubomír Popelínský, Ph.D.

Anotace

V originále

In this paper we present drapi, an algorithm for independent distributed mining of first-order frequent pattern. This system is based on RAP, an algorithm for finding maximal frequent patterns in first-order logic. drapi utilizes a modified data partitioning schema introduced by Savasere et al. and offers good performance and low communication overhead. We analyze the performance of the algorithm on four different tasks: Mutagenicity prediction - a standard ILP benchmark, information extraction from biological texts, context-sensitive spelling correction, and morphological disambiguation of Czech. The results of the analysis show that the algorithm can generate more patterns than the serial algorithm RAP in the same overall time.

Anglicky

In this paper we present drapi, an algorithm for independent distributed mining of first-order frequent pattern. This system is based on RAP, an algorithm for finding maximal frequent patterns in first-order logic. drapi utilizes a modified data partitioning schema introduced by Savasere et al. and offers good performance and low communication overhead. We analyze the performance of the algorithm on four different tasks: Mutagenicity prediction - a standard ILP benchmark, information extraction from biological texts, context-sensitive spelling correction, and morphological disambiguation of Czech. The results of the analysis show that the algorithm can generate more patterns than the serial algorithm RAP in the same overall time.

Návaznosti

MSM0021622418, záměr
Název: DYNAMICKÁ GEOVIZUALIZACE V KRIZOVÉM MANAGEMENTU
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Dynamická geovizualizace v krizovém managementu