J 2008

Generalized models and local invariants of Kohn-Nirenberg domains

KOLÁŘ, Martin

Basic information

Original name

Generalized models and local invariants of Kohn-Nirenberg domains

Name in Czech

Zobecněné modely a lokální invarianty Kohn-Nirenbergových oblastí

Authors

KOLÁŘ, Martin (203 Czech Republic, guarantor)

Edition

Matematische Zeitschrift, Německo, Springer Verlag, 2008, 0025-5874

Other information

Language

English

Type of outcome

Article in a journal

Field of Study

10101 Pure mathematics

Country of publisher

Germany

Confidentiality degree

is not subject to a state or trade secret

Impact factor

Impact factor: 0.734

RIV identification code

RIV/00216224:14310/08:00024798

Organization unit

Faculty of Science

UT WoS

000254261200004

Keywords in English

Kohn-Nirenberg phenomenon; convexifiability; generalized models; pseudoconvexity; finite type

Tags

International impact, Reviewed
Changed: 25/6/2009 15:24, doc. RNDr. Martin Kolář, Ph.D.

Abstract

In the original language

The main obstruction for constructing holomorphic reproducing kernels of Cauchy type on weakly pseudoconvex domains is the Kohn-Nirenberg phenomenon, i.e., nonexistence of supporting functions and local nonconvexifiability. This paper gives an explicit verifiable characterization of weakly pseudoconvex but locally nonconvexifiable hypersurfaces of finite type in dimension two. It is expressed in terms of a generalized model, which captures local geometry of the hypersurface both in the complex tangential and nontangential directions. As an application we obtain a new class of nonconvexifiable pseudoconvex hypersurfaces with convex models.

In Czech

článek dává explicitní ověřitelnou charakterizaci slabě pseudokonvexních, ale nekonvexifikovatelných nadploch v komplexní dimenzi dvě. Hlavním nástrojem jsou zobecněné modelové plochy, které zachycují lokální geometrii jak ve v

Links

GA201/05/2117, research and development project
Name: Algebraické metody v topologii a geometrii
Investor: Czech Science Foundation