D 2008

P-31 Chemical Shift Tensors in Nucleic Acids from the Quantum Chemistry Point of View

PRECECHTELOVA, Jana, Petr PADRTA, Marketa MUNZAROVA a Vladimír SKLENÁŘ

Základní údaje

Originální název

P-31 Chemical Shift Tensors in Nucleic Acids from the Quantum Chemistry Point of View

Název česky

Tenzory 31P chemickeho posunu v nukleovych kyselinach z pohledu kvantove chemie

Autoři

PRECECHTELOVA, Jana, Petr PADRTA, Marketa MUNZAROVA a Vladimír SKLENÁŘ

Vydání

2008. vyd. Brno, 23rd NMR Valtice, s. 7-7, 2008

Nakladatel

Masaryk University

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10403 Physical chemistry

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Organizační jednotka

Přírodovědecká fakulta

ISBN

978-80-86441-39-9

Klíčová slova anglicky

NMR, DFT, nucleic acids, chemical shift
Změněno: 27. 6. 2008 14:12, Mgr. Jana Pavlíková Přecechtělová, Ph.D.

Anotace

V originále

Phosphorus-31 nuclei are known for their large chemical shift anisotropy (CSA), which gives rise to resonance offsets to isotropic chemical shifts upon partial alignment. The so-called induced chemical shifts delta_csa can be used as restraints for structure refinement provided the elements and orientation of the 31P CSA tensor are known. Unfortunately, experimental data are only sparse. Therefore, we have applied density functional theory (DFT) to calculate 31P CSA tensors in canonical as well as non-canonical DNA and RNA backbone conformations using hexahydrated dimethyl phosphate as a model. Separate ranges of isotropic chemical shifts and of delta_11 components of the traceless chemical shift tensor have been found for gauche-gauche and gauche-trans conformations, respectively, which is an evidence of the major effect of torsion angles alpha and zeta on the two quantities. Different directional properties of delta_22 and delta_33 compared to delta_11 account for no clear distinction between the gg- and gt-ranges of the two components, respectively. Generally, 31P CSA tensors display considerable variations resulting in large spans of about 16 ppm for delta_11, and about 22 ppm for delta_22 and delta_33. Differences among the 31P CSA tensors of the conformations inspected have important implications for 31P NMR studies. We examine the consequences not only for induced chemical shifts delta_csa but also for CSA order parameters derived from relaxation measurements.

Česky

Phosphorus-31 nuclei are known for their large chemical shift anisotropy (CSA), which gives rise to resonance offsets to isotropic chemical shifts upon partial alignment. The so-called induced chemical shifts delta_csa can be used as restraints for structure refinement provided the elements and orientation of the 31P CSA tensor are known. Unfortunately, experimental data are only sparse. Therefore, we have applied density functional theory (DFT) to calculate 31P CSA tensors in canonical as well as non-canonical DNA and RNA backbone conformations using hexahydrated dimethyl phosphate as a model. Separate ranges of isotropic chemical shifts and of delta_11 components of the traceless chemical shift tensor have been found for gauche-gauche and gauche-trans conformations, respectively, which is an evidence of the major effect of torsion angles alpha and zeta on the two quantities. Different directional properties of delta_22 and delta_33 compared to delta_11 account for no clear distinction between the gg- and gt-ranges of the two components, respectively. Generally, 31P CSA tensors display considerable variations resulting in large spans of about 16 ppm for delta_11, and about 22 ppm for delta_22 and delta_33. Differences among the 31P CSA tensors of the conformations inspected have important implications for 31P NMR studies. We examine the consequences not only for induced chemical shifts delta_csa but also for CSA order parameters derived from relaxation measurements.

Návaznosti

GD204/03/H016, projekt VaV
Název: Strukturní biofyzika makromolekul
Investor: Grantová agentura ČR, Strukturní biofyzika makromolekul