2008
Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources
NOVÁČEK, Vít, Loredana LAERA, Siegfried HANDSCHUH a Brian DAVISZákladní údaje
Originální název
Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources
Název česky
Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources
Autoři
NOVÁČEK, Vít (203 Česká republika, garant), Loredana LAERA (380 Itálie), Siegfried HANDSCHUH (276 Německo) a Brian DAVIS (372 Irsko)
Vydání
Journal of Biomedical Informatics, Amsterdam, Elsevier, 2008, 1532-0464
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.924
Kód RIV
RIV/00216224:14330/08:00024234
Organizační jednotka
Fakulta informatiky
UT WoS
000260137300013
Klíčová slova anglicky
dynamic ontology integration; ontology evolution; ontology alignment and negotiation; ontology learning; biomedical ontologies; knowledge acquisition; lifecycle
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 11. 2008 12:36, doc. Mgr. Bc. Vít Nováček, PhD
V originále
We present a novel ontology integration technique that explicitly takes the dynam- ics and data-intensiveness of e-health and biomedicine application domains into ac- count. Changing and growing knowledge, possibly contained in unstructured natural language resources, is handled by application of cutting-edge Semantic Web tech- nologies. In particular, semi-automatic integration of ontology learning results into a manually developed ontology is employed. This integration bases on automatic negotiation of agreed alignments, inconsistency resolution and natural language generation methods. Their novel combination alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for efficient application in many practical use cases, as we show in the paper.
Česky
We present a novel ontology integration technique that explicitly takes the dynam- ics and data-intensiveness of e-health and biomedicine application domains into ac- count. Changing and growing knowledge, possibly contained in unstructured natural language resources, is handled by application of cutting-edge Semantic Web tech- nologies. In particular, semi-automatic integration of ontology learning results into a manually developed ontology is employed. This integration bases on automatic negotiation of agreed alignments, inconsistency resolution and natural language generation methods. Their novel combination alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for efficient application in many practical use cases, as we show in the paper.
Návaznosti
1ET100300419, projekt VaV |
|