J 2008

Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources

NOVÁČEK, Vít, Loredana LAERA, Siegfried HANDSCHUH a Brian DAVIS

Základní údaje

Originální název

Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources

Název česky

Infrastructure for Dynamic Knowledge Integration -- Automated Biomedical Ontology Extension Using Textual Resources

Autoři

NOVÁČEK, Vít (203 Česká republika, garant), Loredana LAERA (380 Itálie), Siegfried HANDSCHUH (276 Německo) a Brian DAVIS (372 Irsko)

Vydání

Journal of Biomedical Informatics, Amsterdam, Elsevier, 2008, 1532-0464

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.924

Kód RIV

RIV/00216224:14330/08:00024234

Organizační jednotka

Fakulta informatiky

UT WoS

000260137300013

Klíčová slova anglicky

dynamic ontology integration; ontology evolution; ontology alignment and negotiation; ontology learning; biomedical ontologies; knowledge acquisition; lifecycle

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 3. 11. 2008 12:36, doc. Mgr. Bc. Vít Nováček, PhD

Anotace

V originále

We present a novel ontology integration technique that explicitly takes the dynam- ics and data-intensiveness of e-health and biomedicine application domains into ac- count. Changing and growing knowledge, possibly contained in unstructured natural language resources, is handled by application of cutting-edge Semantic Web tech- nologies. In particular, semi-automatic integration of ontology learning results into a manually developed ontology is employed. This integration bases on automatic negotiation of agreed alignments, inconsistency resolution and natural language generation methods. Their novel combination alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for efficient application in many practical use cases, as we show in the paper.

Česky

We present a novel ontology integration technique that explicitly takes the dynam- ics and data-intensiveness of e-health and biomedicine application domains into ac- count. Changing and growing knowledge, possibly contained in unstructured natural language resources, is handled by application of cutting-edge Semantic Web tech- nologies. In particular, semi-automatic integration of ontology learning results into a manually developed ontology is employed. This integration bases on automatic negotiation of agreed alignments, inconsistency resolution and natural language generation methods. Their novel combination alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for efficient application in many practical use cases, as we show in the paper.

Návaznosti

1ET100300419, projekt VaV
Název: Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu
Investor: Akademie věd ČR, Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu