D 2008

Building Self-Organized Image Retrieval Network

BARTOŇ, Stanislav, Vlastislav DOHNAL, Jan SEDMIDUBSKÝ a Pavel ZEZULA

Základní údaje

Originální název

Building Self-Organized Image Retrieval Network

Název česky

Building Self-Organized Image Retrieval Network

Autoři

BARTOŇ, Stanislav (203 Česká republika, garant), Vlastislav DOHNAL (203 Česká republika), Jan SEDMIDUBSKÝ (203 Česká republika) a Pavel ZEZULA (203 Česká republika)

Vydání

USA, Proceeding of the 2008 ACM workshop on Large-Scale distributed systems for information retrieval (LSDS-IR'08), od s. 51-58, 8 s. 2008

Nakladatel

ACM New York

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/00216224:14330/08:00024257

Organizační jednotka

Fakulta informatiky

ISBN

978-1-60558-254-2

Klíčová slova anglicky

content-based image retrieval; peer-to-peer network; self-organized system; social networking

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 11. 2008 13:24, RNDr. Stanislav Bartoň, Ph.D.

Anotace

V originále

We propose a self-organized content-based Image Retrieval Network (IRN) that is inspired by a Metric Social Network (MSN) search system. The proposed network model is strictly data-owner oriented so no data redistribution among peers is needed in order to efficiently process queries. Thus a shared database where each peer is fully in charge of its data, is created. The self-organization of the network is obtained by exploiting the social-network approach of the MSN -- the connections between peers in the network are created as social-network relationships formed on the basis of a query-answer principle. The knowledge of answers to previous queries is used to fast navigate to peers, possibly containing the best answers to new queries. Additionally, the network uses a randomized mechanism to explore new and unvisited parts of the network. In this way, the self-adaptability and robustness of the system are achieved. The proposed concepts are verified using a real network consisting of 2,000 peers containing descriptive features of 10 million images from the Flickr Photo Sharing system.

Česky

We propose a self-organized content-based Image Retrieval Network (IRN) that is inspired by a Metric Social Network (MSN) search system. The proposed network model is strictly data-owner oriented so no data redistribution among peers is needed in order to efficiently process queries. Thus a shared database where each peer is fully in charge of its data, is created. The self-organization of the network is obtained by exploiting the social-network approach of the MSN -- the connections between peers in the network are created as social-network relationships formed on the basis of a query-answer principle. The knowledge of answers to previous queries is used to fast navigate to peers, possibly containing the best answers to new queries. Additionally, the network uses a randomized mechanism to explore new and unvisited parts of the network. In this way, the self-adaptability and robustness of the system are achieved. The proposed concepts are verified using a real network consisting of 2,000 peers containing descriptive features of 10 million images from the Flickr Photo Sharing system.

Návaznosti

GP201/07/P240, projekt VaV
Název: Distribuované indexační struktury pro podobnostní hledání
Investor: Grantová agentura ČR, Distribuované indexační struktury pro podobnostní hledání
1ET100300419, projekt VaV
Název: Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu
Investor: Akademie věd ČR, Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu