JANČAR, Petr and Jiří SRBA. Undecidability of Bisimilarity by Defender's Forcing. Journal of the ACM. New York: ACM, 2008, 55/2008, No 1, p. 1-26. ISSN 0004-5411.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Undecidability of Bisimilarity by Defender's Forcing
Name in Czech Nerozhodnutelnost bisimulace pomoci tlaku obránce
Authors JANČAR, Petr (203 Czech Republic) and Jiří SRBA (203 Czech Republic, guarantor).
Edition Journal of the ACM, New York, ACM, 2008, 0004-5411.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10201 Computer sciences, information science, bioinformatics
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 2.339
RIV identification code RIV/00216224:14330/08:00026472
Organization unit Faculty of Informatics
UT WoS 000253939800005
Keywords in English undecidability; bisimilarity; rewrite systems
Tags bisimilarity, rewrite systems, undecidability
Tags International impact, Reviewed
Changed by Changed by: Prof. Jiří Srba, Ph.D., učo 2841. Changed: 29/9/2008 22:32.
Abstract
tirling (1996, 1998) proved the decidability of bisimilarity on so-called normed pushdown processes. This result was substantially extended by Senizergues(1998, 2005) who showed the decidability of bisimilarity for regular (or equational) graphs of finite out-degree; this essentially coincides with weak bisimilarity of processes generated by (unnormed) pushdown automata where the epsilon-transitions can only deterministically pop the stack. The question of decidability of bisimilarity for the more general class of so called Type -1 systems, which is equivalent to weak bisimilarity on unrestricted epsilon-popping pushdown processes, was left open. This was repeatedly indicated by both Stirling and Senizergues. Here we answer the question negatively, that is, we show the undecidability of bisimilarity on Type -1 systems, even in the normed case. We achieve the result by applying a technique we call Defender's Forcing, referring to the bisimulation games. The idea is simple, yet powerful. We demonstrate its versatility by deriving further results in a uniform way. First, we classify several versions of the undecidable problems for prefix rewrite systems (or pushdown automata) as Pi^0_1-complete or Sigma^1_1-complete. Second, we solve the decidability question for weak bisimilarity on PA (Process Algebra) processes, showing that the problem is undecidable and even Sigma^1_1-complete. Third, we show Sigma^1_1-completeness of weak bisimilarity for so-called parallel pushdown (or multiset) automata, a subclass of (labeled, place/transition) Petri nets.
Abstract (in Czech)
tirling (1996, 1998) proved the decidability of bisimilarity on so-called normed pushdown processes. This result was substantially extended by Senizergues(1998, 2005) who showed the decidability of bisimilarity for regular (or equational) graphs of finite out-degree; this essentially coincides with weak bisimilarity of processes generated by (unnormed) pushdown automata where the epsilon-transitions can only deterministically pop the stack. The question of decidability of bisimilarity for the more general class of so called Type -1 systems, which is equivalent to weak bisimilarity on unrestricted epsilon-popping pushdown processes, was left open. This was repeatedly indicated by both Stirling and Senizergues. Here we answer the question negatively, that is, we show the undecidability of bisimilarity on Type -1 systems, even in the normed case. We achieve the result by applying a technique we call Defender's Forcing, referring to the bisimulation games. The idea is simple, yet powerful. We demonstrate its versatility by deriving further results in a uniform way. First, we classify several versions of the undecidable problems for prefix rewrite systems (or pushdown automata) as Pi^0_1-complete or Sigma^1_1-complete. Second, we solve the decidability question for weak bisimilarity on PA (Process Algebra) processes, showing that the problem is undecidable and even Sigma^1_1-complete. Third, we show Sigma^1_1-completeness of weak bisimilarity for so-called parallel pushdown (or multiset) automata, a subclass of (labeled, place/transition) Petri nets.
Links
MSM0021622419, plan (intention)Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems
PrintDisplayed: 18/9/2024 22:55