2005
Morphogenesis of Palatal Ridges in the Golden Hamster (Mesocricetus auratus, Rodentia)
BUCHTOVÁ, Marcela, Petra MATULOVÁ, Kirsti WITTER a František TICHÝZákladní údaje
Originální název
Morphogenesis of Palatal Ridges in the Golden Hamster (Mesocricetus auratus, Rodentia)
Název česky
Morphogenesis of Palatal Ridges in the Golden Hamster (Mesocricetus auratus, Rodentia)
Autoři
BUCHTOVÁ, Marcela (203 Česká republika), Petra MATULOVÁ (203 Česká republika, garant), Kirsti WITTER (276 Německo) a František TICHÝ (203 Česká republika)
Vydání
Acta Veterinaria Brno, Brno, 2005, 0001-7213
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.353
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000232717000001
Klíčová slova anglicky
Oral cavity; proliferation; embryo; foetus; development
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 11. 2008 14:07, RNDr. Petra Matulová, CSc.
V originále
Rugae palatinae (RP), transversal mucosal ridges of the mammalian palate, are assumed to play a role during closure of the palate in embryos. The aim of this study was to assess the morphogenesis of palatal ridges in the golden hamster (Mesocricetus auratus, Rodentia) by light and scanning electron microscopy. Cell proliferation was detected by immunohistochemical staining of proliferating cell nuclear antigen (PCNA). In the hamster, three to four antemolar and three intermolar ridges were formed. In ED 11.0 (ED = embryonic day) embryos, RP1 and RP3 were at the epithelial thickening stage, RP2 was a primitive ruga in the rostral part of the palatal processes. In the caudal part of the palate, an epithelial placode represented the prospective RP4-RP7. At ED 12.5, the closed secondary palate bore six ridge primordia. Only RP2 protruded distinctly into the oral cavity. At ED 13.0-14.5 and ED15.0-15.5, the mesenchymal core of the antemolar and intermolar ridge primordia, respectively, started to develop. Strikingly, a local increase of proliferation activity does not seem to be the main process involved in palatal ridge formation and elevation. Although the palatal ridge formation and elevation is based on tissue volume enlargement, strikingly, the proliferation activity was higher in the interrugal epithelium than in the ridge primordia. Rather than the epithelial proliferation activity increase, the change in orientation of mitotic spindles of dividing cells seems to be a reason of palatal ridge formation.
Česky
Rugae palatinae (RP), transversal mucosal ridges of the mammalian palate, are assumed to play a role during closure of the palate in embryos. The aim of this study was to assess the morphogenesis of palatal ridges in the golden hamster (Mesocricetus auratus, Rodentia) by light and scanning electron microscopy. Cell proliferation was detected by immunohistochemical staining of proliferating cell nuclear antigen (PCNA). In the hamster, three to four antemolar and three intermolar ridges were formed. In ED 11.0 (ED=embryonic day) embryos, RP1 and RP3 were at the epithelial thickening stage, RP2 was a primitive ruga in the rostral part of the palatal processes. In the caudal part of the palate, an epithelial placode represented the prospective RP4-RP7. At ED 12.5, the closed secondary palate bore six ridge primordia. Only RP2 protruded distinctly into the oral cavity. At ED 13.0-14.5 and ED15.0-15.5, the mesenchymal core of the antemolar and intermolar ridge primordia, respectively, started to develop. Strikingly, a local increase of proliferation activity does not seem to be the main process involved in palatal ridge formation and elevation. Although the palatal ridge formation and elevation is based on tissue volume enlargement, strikingly, the proliferation activity was higher in the interrugal epithelium than in the ridge primordia. Rather than the epithelial proliferation activity increase, the change in orientation of mitotic spindles of dividing cells seems to be a reason of palatal ridge formation.