D 2008

Fast Method for Computation of Channels in Dynamic Proteins

ZEMEK, Michal, Jiří SKÁLA, Ivana KOLINGEROVÁ, Petr MEDEK, Jiří SOCHOR et. al.

Základní údaje

Originální název

Fast Method for Computation of Channels in Dynamic Proteins

Název česky

Rychlý výpočet tunelů v dynamických proteinech

Autoři

ZEMEK, Michal (203 Česká republika), Jiří SKÁLA (203 Česká republika), Ivana KOLINGEROVÁ (203 Česká republika), Petr MEDEK (203 Česká republika, domácí) a Jiří SOCHOR (203 Česká republika, garant, domácí)

Vydání

1. vyd. Heidelberg, Germany, Vision, Modeling and Visualization 2008, Proceedings, od s. 333-342, 10 s. 2008

Nakladatel

Akademische Verlagsgesselschaft AKA, Heidelberg

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

tištěná verze "print"

Odkazy

Kód RIV

RIV/00216224:14330/08:00025169

Organizační jednotka

Fakulta informatiky

ISBN

978-3-89838-609-8

Klíčová slova anglicky

protein analysis; channel; visualization

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 21. 9. 2015 18:37, prof. Ing. Jiří Sochor, CSc.

Anotace

V originále

Biochemists studying the protein properties use a computer analysis of existence and proportions of the tunnels (cavities), leading from a biochemically significant place inside a protein to its surface. In a computer simulation and visualization, a tunnel in a protein can be searched as a sequence of tetrahedra in the 3D triangulation, where the protein atoms positions are used as the triangulation vertices. The geometry of a protein is not static, the positions of atoms change in time and the biochemists have to explore a long sequence of molecule snapshots to find a stable tunnel. The recent method of a tunnel computation creates a triangulation of the whole protein for each snapshot. The method we propose uses topology information about a tunnel from the previous snapshot and a clustering of atoms to cut down the number of the triangulation vertices in the current snapshot, i.e. we compute only a triangulation of an atom subset for each snapshot. Our resulting tunnels are almost identical with the tunnels computed in the triangulation of the whole protein and the total computing time falls to thirty percent and less.

Česky

Biochemists studying the protein properties use a computer analysis of existence and proportions of the tunnels (cavities), leading from a biochemically significant place inside a protein to its surface. In a computer simulation and visualization, a tunnel in a protein can be searched as a sequence of tetrahedra in the 3D triangulation, where the protein atoms positions are used as the triangulation vertices. The geometry of a protein is not static, the positions of atoms change in time and the biochemists have to explore a long sequence of molecule snapshots to find a stable tunnel. The recent method of a tunnel computation creates a triangulation of the whole protein for each snapshot. The method we propose uses topology information about a tunnel from the previous snapshot and a clustering of atoms to cut down the number of the triangulation vertices in the current snapshot, i.e. we compute only a triangulation of an atom subset for each snapshot. Our resulting tunnels are almost identical with the tunnels computed in the triangulation of the whole protein and the total computing time falls to thirty percent and less.

Návaznosti

GA201/07/0927, projekt VaV
Název: Vizualizace proteinových struktur
Investor: Grantová agentura ČR, Vizualice proteinových struktur