J 2001

Phylogenetic relationships of class II fumarase genes from trichomonad species.

GERBOD, D., V.P. EDGCOMB, C. NOEL, Štěpánka VAŇÁČOVÁ, R. WINTJENS et. al.

Základní údaje

Originální název

Phylogenetic relationships of class II fumarase genes from trichomonad species.

Název česky

Phylogenetic relationships of class II fumarase genes from trichomonad species.

Autoři

GERBOD, D. (250 Francie), V.P. EDGCOMB (826 Velká Británie a Severní Irsko), C. NOEL (250 Francie), Štěpánka VAŇÁČOVÁ (203 Česká republika, garant), R. WINTJENS (56 Belgie), Jan TACHEZY (203 Česká republika), M.L. SOGIN (840 Spojené státy) a E. VISCOGLIOSI (250 Francie)

Vydání

MOLECULAR BIOLOGY AND EVOLUTION, USA, OXFORD UNIV PRESS, 2001, 0737-4038

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

Genetika a molekulární biologie

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 5.357

Kód RIV

RIV/00216224:14310/01:00036248

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000170275500017

Klíčová slova česky

Parabasalida; Trichomonads; phylogeny; fumarase

Klíčová slova anglicky

Parabasalida; Trichomonads; phylogeny; fumarase

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 3. 2010 16:19, prof. Mgr. Štěpánka Vaňáčová, Ph.D.

Anotace

V originále

Class II fumarase sequences were obtained by polymerase chain reaction from five trichomonad species. All residues known to be highly conserved in this enzyme were present. Nuclear run-on assays showed that one of the two genes identified in Tritrichomonas foetus was expressed, whereas no fumarase transcripts were detected in the related species Trichomonas vaginalis. These findings corroborate previous biochemical data. Fumarase genes were also expressed in Monocercomonas sp. and Tetratrichomonas gallinarum but not in Pentatrichomonas hominis, Trichomonas gallinae, Trichomonas tenax, and Trichomitus batrachorum under the culture conditions used. Molecular trees inferred by likelihood methods reveal that trichomonad sequences have no affinity to described class II fumarase genes from other eukaryotes. The absence of functional mitochondria in protists such as trichomonads suggests that they diverged from other eukaryotes prior to the alpha-proteobacterial symbiosis that led to mitochondria. Furthermore, they are basal to other eukaryotes in rRNA analyses. However, support for the early-branching status of trichomonads and other amitochondriate protists based on phylogenetic analyses of multiple data sets has been equivocal. Although the presence of hydrogenosomes suggests that trichomonads once had mitochondria, their class II iron-independent fumarase sequences differ markedly from those of other mitochondriate eukaryotes. All of the class II fumarase genes described from other eukaryotes are of apparent alpha-proteobacterial origin and hence a marker of mitochondrial evolution. In contrast, the class II fumarase from trichomonads emerges among other eubacterial homologs. This is intriguing evidence for an independent acquisition of these genes in trichomonads apart from the mitochondrial endosymbiosis event that gave rise to the form present in other eukaryotes. The ancestral trichomonad class II fumarase may represent a prokaryotic form that was replaced in other eukaryotes after the divergence of trichomonads with the movement of endosymbiont genes into the nucleus. Alternatively, it may have been acquired via a separate endosymbiotic event or lateral gene transfer.

Česky

Class II fumarase sequences were obtained by polymerase chain reaction from five trichomonad species. All residues known to be highly conserved in this enzyme were present. Nuclear run-on assays showed that one of the two genes identified in Tritrichomonas foetus was expressed, whereas no fumarase transcripts were detected in the related species Trichomonas vaginalis. These findings corroborate previous biochemical data. Fumarase genes were also expressed in Monocercomonas sp. and Tetratrichomonas gallinarum but not in Pentatrichomonas hominis, Trichomonas gallinae, Trichomonas tenax, and Trichomitus batrachorum under the culture conditions used. Molecular trees inferred by likelihood methods reveal that trichomonad sequences have no affinity to described class II fumarase genes from other eukaryotes. The absence of functional mitochondria in protists such as trichomonads suggests that they diverged from other eukaryotes prior to the alpha-proteobacterial symbiosis that led to mitochondria. Furthermore, they are basal to other eukaryotes in rRNA analyses. However, support for the early-branching status of trichomonads and other amitochondriate protists based on phylogenetic analyses of multiple data sets has been equivocal. Although the presence of hydrogenosomes suggests that trichomonads once had mitochondria, their class II iron-independent fumarase sequences differ markedly from those of other mitochondriate eukaryotes. All of the class II fumarase genes described from other eukaryotes are of apparent alpha-proteobacterial origin and hence a marker of mitochondrial evolution. In contrast, the class II fumarase from trichomonads emerges among other eubacterial homologs. This is intriguing evidence for an independent acquisition of these genes in trichomonads apart from the mitochondrial endosymbiosis event that gave rise to the form present in other eukaryotes. The ancestral trichomonad class II fumarase may represent a prokaryotic form that was replaced in other eukaryotes after the divergence of trichomonads with the movement of endosymbiont genes into the nucleus. Alternatively, it may have been acquired via a separate endosymbiotic event or lateral gene transfer.