2006
Distributed fiber-optic temperature sensing for hydrologic systems
SELKER, John S., Luc THEVENAZ, Hendrik HUWALD, Alfred MALLET, Wim LUXEMBURG et. al.Základní údaje
Originální název
Distributed fiber-optic temperature sensing for hydrologic systems
Název česky
Distributed fiber-optic temperature sensing for hydrologic systems
Autoři
SELKER, John S. (840 Spojené státy), Luc THEVENAZ (756 Švýcarsko), Hendrik HUWALD (756 Švýcarsko), Alfred MALLET (756 Švýcarsko), Wim LUXEMBURG (528 Nizozemské království), Nick VAN DE GIESEN (528 Nizozemské království), Martin STEJSKAL (203 Česká republika), Josef ZEMAN (203 Česká republika, garant), Martijn WESTHOFF (528 Nizozemské království) a Marc B. PARLANGE (756 Švýcarsko)
Vydání
Water Resources Research, American Geophysical Union, 2006, 0043-1397
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
Geochemie
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.894
Kód RIV
RIV/00216224:14310/06:00030113
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000242759000002
Klíčová slova česky
opticke vlakno; teplotni profil
Klíčová slova anglicky
fiber optic; temperature profile
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 9. 2009 18:33, doc. RNDr. Josef Zeman, CSc.
V originále
Five illustrative applications demonstrate configurations where the distributed temperature sensing (DTS) approach could be used: (1) lake bottom temperatures using existing communication cables, (2) temperature profile with depth in a 1400 m deep decommissioned mine shaft, (3) air-snow interface temperature profile above a snow-covered glacier, (4) air-water interfacial temperature in a lake, and (5) temperature distribution along a first-order stream. In examples 3 and 4 it is shown that by winding the fiber around a cylinder, vertical spatial resolution of millimeters can be achieved. These tools may be of exceptional utility in observing a broad range of hydrologic processes, including evaporation, infiltration, limnology, and the local and overall energy budget spanning scales from 0.003 to 30,000 m. This range of scales corresponds well with many of the areas of greatest opportunity for discovery in hydrologic science.
Česky
Five illustrative applications demonstrate configurations where the distributed temperature sensing (DTS) approach could be used: (1) lake bottom temperatures using existing communication cables, (2) temperature profile with depth in a 1400 m deep decommissioned mine shaft, (3) air-snow interface temperature profile above a snow-covered glacier, (4) air-water interfacial temperature in a lake, and (5) temperature distribution along a first-order stream. In examples 3 and 4 it is shown that by winding the fiber around a cylinder, vertical spatial resolution of millimeters can be achieved. These tools may be of exceptional utility in observing a broad range of hydrologic processes, including evaporation, infiltration, limnology, and the local and overall energy budget spanning scales from 0.003 to 30,000 m. This range of scales corresponds well with many of the areas of greatest opportunity for discovery in hydrologic science.
Návaznosti
FT-TA/066, projekt VaV |
|