LUBAL, Přemysl, Antonín ŠTĚPÁNEK and Zdeňka JAROLÍMOVÁ. Metal complexes of macrocyclic ligands mimicking enzyme activity. In Abstract Book of ISABC 10 conference (International Symposium on Applied Bioinorganic Chemistry). Debrecen: Department of Inorganic and Analytical Chemistry, Debrecen University, 2009, 224 pp. ISBN 978-963-473-307-2.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Metal complexes of macrocyclic ligands mimicking enzyme activity
Name in Czech Kovové komplexy macrocyklických ligandů jako modely enzymů
Authors LUBAL, Přemysl (203 Czech Republic, guarantor, belonging to the institution), Antonín ŠTĚPÁNEK (203 Czech Republic, belonging to the institution) and Zdeňka JAROLÍMOVÁ (203 Czech Republic, belonging to the institution).
Edition Debrecen, Abstract Book of ISABC 10 conference (International Symposium on Applied Bioinorganic Chemistry), 224 pp. 2009.
Publisher Department of Inorganic and Analytical Chemistry, Debrecen University
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10406 Analytical chemistry
Country of publisher Hungary
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14310/09:00037452
Organization unit Faculty of Science
ISBN 978-963-473-307-2
Keywords in English macrocyclic ligands; metal complexes; enzyme; analytical determination; nucleotides
Tags International impact
Changed by Changed by: prof. RNDr. Přemysl Lubal, Ph.D., učo 1271. Changed: 11/1/2011 13:35.
Abstract
Metal ions form with macrocyclic ligands more stable complexes than with analogous acyclic ligands from both thermodynamic and kinetic point of view. These complexes can be studied as suitable models in order to mimic the metaloenzyme activity. In this contribution, the catalytic activity of [M(cyclen)]2+ complexes (M = Zn, Cd, Cu, Ni, cyclen = 1,4,7,10-tetraazacyclodecane, [12]aneN4) which are mimicking enzymes was investigated for hydrolysis of acetic acid esters acting as substrate. The rate of ester hydrolysis was monitored by molecular absorption (for 4-nitrophenylacetate) or luminescence (for 4-methylumbelliferylacetate) spectroscopy and optimal experimental conditions (e.g. temperature, pH, buffer, etc.) were found. The catalytic activity of the most active Zn(II) and Cd(II) metal complexes is inhibited by some compounds due to formation of stable ternary complexes. The influence of various inhibiting agents (mostly base, e.g. Thymin, Uracil, Cytosin, Adenin, Guanin, and their simple nucleosides and nucleotides) on rate of ester hydrolysis was studied. The effect of minute structural changes of inhibitors is the highest for nucleotides and the smallest for bases. The inhibition constants were evaluated from experimental data and compared with analogous systems. Metal ions form with macrocyclic ligands more stable complexes than with analogous acyclic ligands from both thermodynamic and kinetic point of view. These complexes can be studied as suitable models in order to mimic the metaloenzyme activity. In this contribution, the catalytic activity of [M(cyclen)]2+ complexes (M = Zn, Cd, Cu, Ni, cyclen = 1,4,7,10-tetraazacyclodecane, [12]aneN4) which are mimicking enzymes was investigated for hydrolysis of acetic acid esters acting as substrate. The rate of ester hydrolysis was monitored by molecular absorption (for 4-nitrophenylacetate) or luminescence (for 4-methylumbelliferylacetate) spectroscopy and optimal experimental conditions (e.g. temperature, pH, buffer, etc.) were found. The catalytic activity of the most active Zn(II) and Cd(II) metal complexes is inhibited by some compounds due to formation of stable ternary complexes. The influence of various inhibiting agents (mostly base, e.g. Thymin, Uracil, Cytosin, Adenin, Guanin, and their simple nucleosides and nucleotides) on rate of ester hydrolysis was studied. The effect of minute structural changes of inhibitors is the highest for nucleotides and the smallest for bases. The inhibition constants were evaluated from experimental data and compared with analogous systems.
Abstract (in Czech)
Metal ions form with macrocyclic ligands more stable complexes than with analogous acyclic ligands from both thermodynamic and kinetic point of view. These complexes can be studied as suitable models in order to mimic the metaloenzyme activity. In this contribution, the catalytic activity of [M(cyclen)]2+ complexes (M = Zn, Cd, Cu, Ni, cyclen = 1,4,7,10-tetraazacyclodecane, [12]aneN4) which are mimicking enzymes was investigated for hydrolysis of acetic acid esters acting as substrate. The rate of ester hydrolysis was monitored by molecular absorption (for 4-nitrophenylacetate) or luminescence (for 4-methylumbelliferylacetate) spectroscopy and optimal experimental conditions (e.g. temperature, pH, buffer, etc.) were found. The catalytic activity of the most active Zn(II) and Cd(II) metal complexes is inhibited by some compounds due to formation of stable ternary complexes. The influence of various inhibiting agents (mostly base, e.g. Thymin, Uracil, Cytosin, Adenin, Guanin, and their simple nucleosides and nucleotides) on rate of ester hydrolysis was studied. The effect of minute structural changes of inhibitors is the highest for nucleotides and the smallest for bases. The inhibition constants were evaluated from experimental data and compared with analogous systems. Metal ions form with macrocyclic ligands more stable complexes than with analogous acyclic ligands from both thermodynamic and kinetic point of view. These complexes can be studied as suitable models in order to mimic the metaloenzyme activity. In this contribution, the catalytic activity of [M(cyclen)]2+ complexes (M = Zn, Cd, Cu, Ni, cyclen = 1,4,7,10-tetraazacyclodecane, [12]aneN4) which are mimicking enzymes was investigated for hydrolysis of acetic acid esters acting as substrate. The rate of ester hydrolysis was monitored by molecular absorption (for 4-nitrophenylacetate) or luminescence (for 4-methylumbelliferylacetate) spectroscopy and optimal experimental conditions (e.g. temperature, pH, buffer, etc.) were found. The catalytic activity of the most active Zn(II) and Cd(II) metal complexes is inhibited by some compounds due to formation of stable ternary complexes. The influence of various inhibiting agents (mostly base, e.g. Thymin, Uracil, Cytosin, Adenin, Guanin, and their simple nucleosides and nucleotides) on rate of ester hydrolysis was studied. The effect of minute structural changes of inhibitors is the highest for nucleotides and the smallest for bases. The inhibition constants were evaluated from experimental data and compared with analogous systems.
Links
LC06035, research and development projectName: Centrum biofyzikální chemie, bioelektrochemie a bioanalýzy. Nové nástroje pro genomiku, proteomiku a biomedicínu.
Investor: Ministry of Education, Youth and Sports of the CR, Centre of Biophysical Chemistry, Bioelectrochemistry and Bioanalysis. New Tools for Genomics, Proteomics and Biomedicine
ME09065, research and development projectName: Výzkum nových detekčních systémů na bázi senzorových polí pro použití ve speciační analýze
Investor: Ministry of Education, Youth and Sports of the CR, Research of new detection systems based on sensor arrays for application in speciation analysis, Research and Development Programme KONTAKT (ME)
PrintDisplayed: 15/10/2024 07:33