a 2010

Two different approaches to small sample size - a common problem in MRI-based studies

JANOUŠOVÁ, Eva; Daniel SCHWARZ and Tomáš KAŠPÁREK

Basic information

Original name

Two different approaches to small sample size - a common problem in MRI-based studies

Name in Czech

Srovnání dvou přístupů k problému malého počtu vzorků v MRI studiích

Edition

Mezinárodní workshop funkční magnetické rezonance, 2010

Other information

Language

English

Type of outcome

Conference abstract

Field of Study

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Country of publisher

Czech Republic

Confidentiality degree

is not subject to a state or trade secret

Organization unit

Faculty of Medicine

Keywords in English

principal component analysis;schizophrenia;MRI;computational neuroanatomy;2DPCA;pPCA
Changed: 29/3/2010 09:28, RNDr. Eva Koriťáková, Ph.D.

Abstract

In the original language

Recently, the small sample size problem and huge image data have often been discussed in MRI-based studies. Two methods for data reduction are compared here and further modified to solve classification of 3-D MRI data sets in the schizophrenia research. The results show that PCA based on covariance matrix of patients (pPCA) is more suitable for large MRI data reduction than 2DPCA. The results also indicate that deformation images are more appropriate for classification than GM density images.

Links

NS10347, research and development project
Name: Moderní metody rozpoznávání pro analýzu obrazových dat v neuropsychiatrickém výzkumu
Investor: Ministry of Health of the CR
NS9893, research and development project
Name: Predikce průběhu iniciálních fází schizofrenie pomocí morfologie mozku
Investor: Ministry of Health of the CR