2011
Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
KAŠPÁREK, Tomáš, Carlos Eduardo THOMAZ, Joao Ricardo SATO, Daniel SCHWARZ, Eva JANOUŠOVÁ et. al.Základní údaje
Originální název
Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
Autoři
KAŠPÁREK, Tomáš (203 Česká republika, garant, domácí), Carlos Eduardo THOMAZ (76 Brazílie), Joao Ricardo SATO (76 Brazílie), Daniel SCHWARZ (203 Česká republika, domácí), Eva JANOUŠOVÁ (203 Česká republika, domácí), Radek MAREČEK (203 Česká republika, domácí), Radovan PŘIKRYL (203 Česká republika, domácí), Jiří VANÍČEK (203 Česká republika, domácí), Andre FUJITA (392 Japonsko) a Eva ČEŠKOVÁ (203 Česká republika, domácí)
Vydání
Psychiatry Research: Neuroimaging, 2011, 0925-4927
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30000 3. Medical and Health Sciences
Stát vydavatele
Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.964
Kód RIV
RIV/00216224:14110/11:00052818
Organizační jednotka
Lékařská fakulta
UT WoS
000288728500004
Klíčová slova anglicky
Schizophrenia; First episode; Classification; Brain morphology
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 1. 2014 12:42, RNDr. Eva Koriťáková, Ph.D.
Anotace
V originále
Recent techniques of image analysis brought the possibility to recognize subjects based on discriminative image features. We performed a magnetic resonance imaging (MRI)-based classification study to assess its usefulness for outcome prediction of first-episode schizophrenia patients (FES). We included 39 FES patients and 39 healthy controls (HC) and performed the maximum-uncertainty linear discrimination analysis (MLDA) of MRI brain intensity images. The classification accuracy index (CA) was correlated with the Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning scale (GAF) at 1-year follow-up. The rate of correct classifications of patients with poor and good outcomes was analyzed using chi-square tests. MLDA classification was significantly better than classification by chance. Leave-oneout accuracy was 72%. CA correlated significantly with PANSS and GAF scores at the 1-year follow-up. Moreover, significantly more patients with poor outcome than those with good outcome were classified correctly.MLDA of brain MR intensity features is, therefore, able to correctly classify a significant number of FES patients, and the discriminative features are clinically relevant for clinical presentation 1 year after the first episode of schizophrenia. The accuracy of the current approach is, however, insufficient to be used in clinical practice immediately. Severalmethodological issues need to be addressed to increase the usefulness of this classification approach.
Návaznosti
MSM0021622404, záměr |
| ||
NS10347, projekt VaV |
| ||
NS9893, projekt VaV |
|