2011
Self-Organization of 1-Methylnaphthalene on the Surface of Artificial Snow Grains: A Combined Experimental–Computational Approach
HEGER, Dominik, Dana NACHTIGALLOVÁ, František SURMAN, Ján KRAUSKO, Beáta MAGYAROVÁ et. al.Základní údaje
Originální název
Self-Organization of 1-Methylnaphthalene on the Surface of Artificial Snow Grains: A Combined Experimental–Computational Approach
Autoři
HEGER, Dominik (203 Česká republika, domácí), Dana NACHTIGALLOVÁ (203 Česká republika), František SURMAN (203 Česká republika, domácí), Ján KRAUSKO (703 Slovensko, domácí), Beáta MAGYAROVÁ (703 Slovensko, domácí), Miroslav BRUMOVSKÝ (203 Česká republika, domácí), Miroslav RUBEŠ (203 Česká republika), Ivan GLADICH (203 Česká republika) a Petr KLÁN (203 Česká republika, garant, domácí)
Vydání
The Journal of Physical Chemistry A, Washington, Americal Chemical Society, 2011, 1089-5639
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10401 Organic chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.946
Kód RIV
RIV/00216224:14310/11:00050097
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000295700600033
Klíčová slova anglicky
Air-snow exchange; artificial snow; specific surface area; monolayer coverage; 1-methylnaphthalene; fluorescence; excimer; molecular dynamics simulations; DFT and CC2 calculations.
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 4. 2015 22:20, prof. RNDr. Petr Klán, Ph.D.
Anotace
V originále
A combined experimental-computational approach was used to study the self-organization and microenvironment of 1-methylnaphthalene (1MN) deposited on the surface of artificial snow grains from vapors at 238 K. The specific surface area of this snow (1.1 x 104 cm2 g-1), produced by spraying very fine droplets of pure water from a nebulizer into liquid nitrogen, was determined using valerophenone photochemistry to estimate the surface coverage by 1MN. Fluorescence spectroscopy at 77 K, in combination with molecular dynamics simulations, and DFT and CC2 calculations, provided evidence for the occurrence of ground- and excited-state complexes (excimers) and other associates of 1MN on the snow grains’ surface. Only weak excimer fluorescence was observed for a loading of 5 x 10-6 mol kg-1, which is 2-3 orders of magnitude below monolayer coverage. However, the results indicate that the formation of excimers is favored at higher surface loadings (5 x 10-5 mol kg-1), albeit still being below monolayer coverage. The calculations of excited states of monomer and associated moieties suggested that a parallel-displaced arrangement is responsible for the excimer emission observed experimentally, although some other associations, such as T-shape dimer structures which do not provide excimer emission, can still be relatively abundant at this surface concentration. The hydrophobic 1MN molecules, deposited on the ice surface, which is covered by a relatively flexible quasi-liquid layer at 238 K, are then assumed to be capable of dynamic motion resulting in the formation of energetically preferred associations to some extent. The environmental implications of organic compounds’ deposition on snow grains and ice are discussed.
Návaznosti
ED0001/01/01, projekt VaV |
| ||
GAP503/10/0947, projekt VaV |
| ||
MSM0021622412, záměr |
|