2012
Generation of Synthetic Image Datasets for Time-Lapse Fluorescence Microscopy
SVOBODA, David a Vladimír ULMANZákladní údaje
Originální název
Generation of Synthetic Image Datasets for Time-Lapse Fluorescence Microscopy
Autoři
SVOBODA, David (203 Česká republika, garant, domácí) a Vladimír ULMAN (203 Česká republika, domácí)
Vydání
LNCS 7325, Part II. Heidelberg, Proceedings of 9th International Conference on Image Analysis and Recognition, od s. 473-482, 10 s. 2012
Nakladatel
Springer-Verlag
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/12:00057285
Organizační jednotka
Fakulta informatiky
ISBN
978-3-642-31297-7
ISSN
Klíčová slova anglicky
Simulation; Optical flow; 3D image sequences; Fluorescence optical microscopy
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 4. 2013 10:18, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In the field of biomedical image analysis, motion tracking and segmentation algorithms are important tools for time-resolved analysis of cell characteristics, events, and tracking. There are many algorithms in everyday use. Nevertheless, most of them is not properly validated as the ground truth (GT), which is a very important tool for the verification of image processing algorithms, is not naturally available. Many algorithms in this field of study are, therefore, validated only manually by an human expert. This is usually difficult, cumbersome and time consuming task, especially when single 3D image or even 3D image sequence is considered. In this paper, we have proposed a technique that generates time-lapse sequences of fully 3D synthetic image datasets. It includes generating shape, structure, and also motion of selected biological objects. The corresponding GT data is generated as well. The technique is focused on the generation of synthetic objects at various scales. Such datasets can be then processed by selected segmentation or motion tracking algorithms. The results can be compared with the GT and the quality of the applied algorithm can be measured.
Návaznosti
GBP302/12/G157, projekt VaV |
|