J 2011

q-Karamata functions and second order q-difference equations

ŘEHÁK, Pavel a Jiří VÍTOVEC

Základní údaje

Originální název

q-Karamata functions and second order q-difference equations

Autoři

ŘEHÁK, Pavel (203 Česká republika, garant, domácí) a Jiří VÍTOVEC (203 Česká republika, domácí)

Vydání

Electronic Journal of Qualitative Theory of Differential Equations, Szeged, 2011, 1417-3875

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Maďarsko

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.557

Kód RIV

RIV/00216224:14410/11:00050560

Organizační jednotka

Pedagogická fakulta

UT WoS

000289152400001

Klíčová slova anglicky

regularly varying functions; rapidly varying functions; q-difference equations; asymptotic behavior
Změněno: 25. 2. 2015 14:17, Dana Nesnídalová

Anotace

V originále

In this paper we introduce and study $q$-rapidly varying functions on the lattice $\qN:=\{q^k:k\in\N_0\}$, $q>1$, which naturally extend the recently established concept of $q$-regularly varying functions. These types of functions together form the class of the so-called $q$-Karamata functions. The theory of $q$-Karamata functions is then applied to half-linear $q$-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as $q$-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the $q$-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other $q$-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our results show that $\qN$ is a very natural setting for the theory of $q$-rapidly and $q$-regularly varying functions and its applications, and reveal some interesting phenomena, which are not known from the continuous theory.

Návaznosti

GAP201/10/1032, projekt VaV
Název: Diferenční rovnice a dynamické rovnice na ,,time scales'' III (Akronym: Difrov)
Investor: Grantová agentura ČR, Diferenční rovnice a dynamické rovnice na time scales III