2011
q-Karamata functions and second order q-difference equations
ŘEHÁK, Pavel a Jiří VÍTOVECZákladní údaje
Originální název
q-Karamata functions and second order q-difference equations
Autoři
ŘEHÁK, Pavel (203 Česká republika, garant, domácí) a Jiří VÍTOVEC (203 Česká republika, domácí)
Vydání
Electronic Journal of Qualitative Theory of Differential Equations, Szeged, 2011, 1417-3875
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Maďarsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.557
Kód RIV
RIV/00216224:14410/11:00050560
Organizační jednotka
Pedagogická fakulta
UT WoS
000289152400001
Klíčová slova anglicky
regularly varying functions; rapidly varying functions; q-difference equations; asymptotic behavior
Změněno: 25. 2. 2015 14:17, Dana Nesnídalová
Anotace
V originále
In this paper we introduce and study $q$-rapidly varying functions on the lattice $\qN:=\{q^k:k\in\N_0\}$, $q>1$, which naturally extend the recently established concept of $q$-regularly varying functions. These types of functions together form the class of the so-called $q$-Karamata functions. The theory of $q$-Karamata functions is then applied to half-linear $q$-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as $q$-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the $q$-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other $q$-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our results show that $\qN$ is a very natural setting for the theory of $q$-rapidly and $q$-regularly varying functions and its applications, and reveal some interesting phenomena, which are not known from the continuous theory.
Návaznosti
GAP201/10/1032, projekt VaV |
|