2012
Lower Bounds on the Complexity of MSO_1 Model-Checking
GANIAN, Robert, Petr HLINĚNÝ, Jan OBDRŽÁLEK, Alexander LANGER, Peter ROSSMANITH et. al.Základní údaje
Originální název
Lower Bounds on the Complexity of MSO_1 Model-Checking
Název česky
Dolní meze složitosti MSO1 model checking
Autoři
GANIAN, Robert (840 Spojené státy, domácí), Petr HLINĚNÝ (203 Česká republika, garant, domácí), Jan OBDRŽÁLEK (203 Česká republika, domácí), Alexander LANGER (276 Německo), Peter ROSSMANITH (276 Německo) a Somnath SIKDAR (356 Indie)
Vydání
2012. vyd. Dagstuhl, Germany, 29th International Symposium on Theoretical Aspects of Computer Science STACS2012, od s. 326-337, 12 s. 2012
Nakladatel
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, LIPICS
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/12:00057595
Organizační jednotka
Fakulta informatiky
ISBN
978-3-939897-35-4
ISSN
UT WoS
000325386500013
Klíčová slova anglicky
Monadic Second-Order Logic; Treewidth; Lower Bounds; Exponential Time Hypothesis; Parameterized Complexity
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 3. 2013 13:29, prof. RNDr. Petr Hliněný, Ph.D.
V originále
One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width.
Česky
Rozšiřujeme výsledky Kreutzera a Tazariho o neřešitelnosti MSO2 logiky na třídách grafů s výrazně rostoucí tree-width na MSO1 logiku s barvami vrcholů.
Návaznosti
GAP202/11/0196, projekt VaV |
| ||
MUNI/A/0758/2011, interní kód MU |
|