D 2012

Lower Bounds on the Complexity of MSO_1 Model-Checking

GANIAN, Robert, Petr HLINĚNÝ, Jan OBDRŽÁLEK, Alexander LANGER, Peter ROSSMANITH et. al.

Basic information

Original name

Lower Bounds on the Complexity of MSO_1 Model-Checking

Name in Czech

Dolní meze složitosti MSO1 model checking

Authors

GANIAN, Robert (840 United States of America, belonging to the institution), Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution), Jan OBDRŽÁLEK (203 Czech Republic, belonging to the institution), Alexander LANGER (276 Germany), Peter ROSSMANITH (276 Germany) and Somnath SIKDAR (356 India)

Edition

2012. vyd. Dagstuhl, Germany, 29th International Symposium on Theoretical Aspects of Computer Science STACS2012, p. 326-337, 12 pp. 2012

Publisher

Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, LIPICS

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

France

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/12:00057595

Organization unit

Faculty of Informatics

ISBN

978-3-939897-35-4

ISSN

UT WoS

000325386500013

Keywords in English

Monadic Second-Order Logic; Treewidth; Lower Bounds; Exponential Time Hypothesis; Parameterized Complexity

Tags

International impact, Reviewed
Změněno: 31/3/2013 13:29, prof. RNDr. Petr Hliněný, Ph.D.

Abstract

V originále

One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width.

In Czech

Rozšiřujeme výsledky Kreutzera a Tazariho o neřešitelnosti MSO2 logiky na třídách grafů s výrazně rostoucí tree-width na MSO1 logiku s barvami vrcholů.

Links

GAP202/11/0196, research and development project
Name: Třídy dobře strukturovaných kombinatorických objektů, šířkové parametry a návrh efektivních algoritmů
Investor: Czech Science Foundation, Well-structured combinatorial classes, width parameters, and design of efficient algorithms
MUNI/A/0758/2011, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A