2012
Handling Time Changing Data with Adaptive Very Fast Decision Rules
KOSINA, Petr a Joao GAMAZákladní údaje
Originální název
Handling Time Changing Data with Adaptive Very Fast Decision Rules
Autoři
KOSINA, Petr (203 Česká republika, garant, domácí) a Joao GAMA (620 Portugalsko)
Vydání
Berlin / Heidelberg, Machine Learning and Knowledge Discovery in Databases ECML/PKDD, od s. 827-842, 16 s. 2012
Nakladatel
Springer Berlin / Heidelberg
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/12:00061019
Organizační jednotka
Fakulta informatiky
ISBN
978-3-642-33459-7
ISSN
Klíčová slova anglicky
Data Streams; Decision Rules; Concept Drift
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 4. 2013 13:24, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Data streams are usually characterized by changes in the underlying distribution generating data. Therefore algorithms designed to work with data streams should be able to detect changes and quickly adapt the decision model. Rules are one of the most interpretable and flexible models for data mining prediction tasks. In this paper we present the Adaptive Very Fast Decision Rules (AVFDR), an on-line, any-time and one-pass algorithm for learning decision rules in the context of time changing data. AVFDR can learn ordered and unordered rule sets. It is able to adapt the decision model via incremental induction and specialization of rules. Detecting local drifts takes advantage of the modularity of rule sets. In AVFDR, each individual rule monitors the evolution of performance metrics to detect concept drift. AVFDR prunes rules that detect drift. This explicit change detection mechanism provides useful information about the dynamics of the process generating data, faster adaption to changes and generates compact rule sets. The experimental evaluation shows this method is able to learn fast and compact rule sets from evolving streams in comparison to alternative methods.
Návaznosti
LA09016, projekt VaV |
| ||
MUNI/A/0758/2011, interní kód MU |
|