MB103 Mathematics III

Faculty of Informatics
Autumn 2005
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
doc. RNDr. Martin Kolář, Ph.D. (seminar tutor)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. Jaroslava Sidorová (seminar tutor)
Mgr. Stepan Sukovych (seminar tutor)
RNDr. Jitka Vacková, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Thu 10:00–11:50 D1
  • Timetable of Seminar Groups:
MB103/01: Thu 12:00–13:50 B003, R. Šimon Hilscher
MB103/02: Mon 10:00–11:50 B003, M. Kolář
MB103/03: Tue 8:00–9:50 B011, J. Vacková
MB103/04: Tue 10:00–11:50 B011, J. Vacková
MB103/05: Tue 14:00–15:50 B003, G. Kraváčková
MB103/06: Tue 16:00–17:50 B003, S. Sukovych
MB103/07: Thu 14:00–15:50 B003, G. Kraváčková
MB103/08: Thu 16:00–17:50 B003, G. Kraváčková
MB103/09: Mon 14:00–15:50 B003, J. Sidorová
MB103/10: Tue 14:00–15:50 B007, J. Sidorová
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Antiderivative, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
  • NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Two-hour lectures and practising, two-hour written final exam. Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (Autumn 2005, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2005/MB103