BIp025 Fundamentals of Genetics and Cellular Processes

Faculty of Education
Autumn 2017
Extent and Intensity
1/2/0. 3 credit(s). Type of Completion: k (colloquium).
Teacher(s)
Mgr. Martina Jančová, Ph.D. (lecturer)
Guaranteed by
Mgr. Martina Jančová, Ph.D.
Department of Biology – Faculty of Education
Contact Person: Mgr. Martina Jančová, Ph.D.
Supplier department: Department of Biology – Faculty of Education
Timetable
Mon 12:05–12:50 šatna
  • Timetable of Seminar Groups:
BIp025/01: Tue 13:00–14:40 laboratoř 83, M. Jančová
BIp025/02: Mon 14:50–16:30 laboratoř 83, M. Jančová
BIp025/03: Wed 13:55–15:35 laboratoř 83, M. Jančová
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
At the end of this course, students should be able to: • - explain basic genetics terms, Mendel´s and Morgan´s laws and basics of cytogenetics. • - comprehend and explain general principles of heredity and variability of living organisms occuring in both uni- and multicellular organisms. • - understand that transmission of hereditary predispositions during the sexual reproduction process is a source of traits variability for all diploid organisms - students explain this fact on their own examples. • - aware of the specifics of human traits heredity and the significance of human genome research. • - apply the genetics of individual organisms to the genetics of populations. • - appreciate on the basis of acquired knowledge an importance of hereditary predispositions that can be manifested to the form of individuum concrete traits and use this knowledge in pedagogic employment and in children education; • - distinguish noncellular and cellular (pro- and eukaryotic) organisms. • - describe memory, membrane and cytoskeletal principles of the cells. • - understand and explain basic processes which take place at the cellular level in living organisms - the grounds of cellular and molecular biology and genetics. At the end of this course, students should be able to: • - solve model examples from genetics of eukaryonts; • - solve model examples from genetics of populations; • - create and analyse a human karyotype; • - identify and specify types of the most frequent chromosomal aberrations; • - explain mechanisms of emergence of chromosomal and genome mutations; - be able to breed and use of Drosophila melanogaster at teaching of genetics.
Syllabus
  • Lectures:
  • 1. Základní genetické pojmy - dědičnost, proměnlivost, gen, alely a jejich vzájemné vztahy, genotyp, fenotyp, genom, genofond, mnohotná alelie ad. Zákony počtu pravděpodobnosti. Modelové organizmy v genetice.
  • 2. Základní genetické zákonitosti: Mendelovy fenotypové a genotypové zákony. Hybridizmus – monohybridizmus, dihybridizmus, polyhybridizmus. Křížení zpětné, křížení reciproké.
  • 3. Základy cytogenetiky I.: Stavba a význam chromozomů, chromozomální determinace pohlaví, chromozomové abnormality.
  • 4. Základy cytogenetiky II.: Buněčný cyklus. Zánik buněk. Průběh mitózy a meiózy. Genetický dopad meiózy. Gametogeneze u člověka.
  • 5. Nukleové kyseliny, bílkoviny - význam, struktura. Replikace, transkripce, translace. Exprese genetické informace. Mutace - klasifikace, detekce, jejich příčiny a důsledky.
  • 6. Příčiny odchylek od teoretických štěpných poměrů definovaných Mendelem - penetrance, expresivita, znaky vázané na pohlaví, znaky pohlavím ovlivněné a ovládané, interakce nealelních genů, maternální dědičnost.
  • 7. Morganovy zákony. Vazba genů - genetické mapování. Hypotézy mechanismu a význam crossing overu. Morganovo a Batesonovo číslo.
  • 8. Studium genetiky člověka - metody, omezení. Příbuzenské svazky. Eugenika. Lékařská genetika. Dědičnost kvantitativních znaků člověka. Dědičnost inteligence, talentu.
  • 9. Genetika populací: Autogamní a panmiktická populace – charakteristiky. Hardyův-Weinbergův zákon genetické rovnováhy - důsledky, výpočet alelové a genotypové frekvence. Selekce, mutace, struktura populací - genový drift, migrace.
  • 10. Taxonomy of organisms (noncellular and cellular organisms - differencies and basic division).
  • 11. Cell theory and principles of cells functional organization (memory, membrane and cytoskeletal principles).
  • 12. Differencies between pro- and eukaryotic cells.Cell cycle. Cell necrosis, cell apoptosis. Destiny of cells in multicellular (human) organism.
  • Laboratory excercises:
  • 1. Drosophila melanogaster - experimental hybridization. Segregation, combination - examples. Laws of probability calculation – examples.
  • 2. Basic genetic terminology, mutual relations between alleles, genealogy – examples.
  • 3. Mendel’s laws I.: model examples of AD and AR heredity.
  • 4. Mendel’s laws II.: model examples of GD and GR heredity.
  • 5. Genetic prognosis.
  • 6. Eukaryotic chromosomes I.: assembling of karyotypes and their evaluation. Male and female karyotypes.
  • 7. Eukaryotic chromosomes II.: chromosome aberrations at man - examples.
  • 8. Extraction DNA from fruit and vegetable, reversibil denaturation of proteins - experiments. Expression of genetic information, point and chromosomal mutations - examples.
  • 9. Chromosomes, cell cycle - microscopy of Barr body.
  • 10. Deviations from Mendel’s rules: penetrance, expresivity, sex-influenced and -controlled traits, non-allelic genes interaction - examples.
  • 11. Morgan’s laws, genetic bond, strength of the bond, principles of chromosome maps construction. Calculation of Morgan´s and Bateson´s numbers - examples.
  • 12. Population genetics: H.-W. genetic equilibrium - numerical exercises, examples of fixation and displacement of alleles – mutations and selective pressure.
  • 13. Coefficient of affinity and dangers resulting from inbreeding – examples, heredity of quantitative traits at man – observation of dermatoglyphs, examples.
Literature
    recommended literature
  • KARP, Gerald. Cell biology : international student version. Edited by James G. Patton. Seventh edition. Hoboken, NJ: Wiley, 2014, xvi, 783. ISBN 9781118318744. info
  • SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. 1. vyd. Brno: Masarykova univerzita, 2009, 871 pp. ISBN 978-80-210-4852-2. Online knihkupectví Munipress info
  • RELICHOVÁ, Jiřina. Genetika populací. 1. vyd. Brno: Masarykova univerzita, 2009, 187 s. ISBN 9788021047952. URL info
  • KOČÁREK, Eduard. Genetika : obecná genetika a cytogenetika, molekulární biologie, biotechnologie, genomika. Illustrated by Jan Maget. 2. vydání. Praha: Scientia, 2008, 211 stran. ISBN 9788086960364. info
  • ZÁVODSKÁ, Radka. Biologie buněk : základy cytologie, bakteriologie, virologie. 1. vyd. Praha: Scientia, 2006, 160 s. ISBN 8086960153. info
  • NUSSBAUM, Robert L., Roderick R. MCINNES, Huntington F. WILLARD, James THOMPSON and Margaret Wilson THOMPSON. Klinická genetika : Thompson & Thompson. Translated by Petr Goetz. Vyd. 1. Praha: Triton, 2004, 426, lix. ISBN 8072544756. info
  • ALBERTS, Bruce. Základy buněčné biologie : úvod do molekulární biologie buňky. Translated by Arnošt Kotyk. 2. vyd. Ústí nad Labem: Espero Publishing, 2004, xxvi, 630. ISBN 8090290620. info
  • ALBERTS, Bruce. Základy buněčné biologie : úvod do molekulární biologie buňky. Translated by Arnošt Kotyk. 2. vyd. Ústí nad Labem: Espero Publishing, 2004, xxvi, 630. ISBN 8090290620. info
  • ŠMARDA, Jan. Genetika : pro gymnázia. 1. vyd. Praha: Fortuna, 2003, 143 s. ISBN 8071688517. info
  • BERGER, Josef. Biologie buněk. 1. vyd. České Budějovice: KOPP, 2000, 211 s. ISBN 80-7232-119-6. info
  • NEČAS, Oldřich. Obecná biologie : pro lékařské fakulty. 3. přeprac. vyd., v nakl. H. Jinočany: H & H, 2000, 554 s. ISBN 8086022463. info
  • NEČAS, Oldřich. Obecná biologie : pro lékařské fakulty. 3. přeprac. vyd., v nakl. H. Jinočany: H & H, 2000, 554 s. ISBN 8086022463. info
  • KUBIŠTA, Václav. Obecná biologie : úvodní učební text biologie pro 1. ročník gymnázií. 3. upr. vyd. Praha: Fortuna, 2000, 103 s. ISBN 8071687146. info
  • HAVELKOVÁ, Marie. Pravděpodobnost a její význam v dědičnosti. 3. přeprac. vyd. Brno: Univerzita J.E.Purkyně, 1988, 39 s. info
Teaching methods
Theoretical preparation – lectures supported by chosen extracts from special video programmes. The topic of each lecture and recommended literature will be provided one week in advance. Each lecture will be finished by its revision through colloquy. Students will discuss new terms and context which were presented and explained during the lecture. During practical seminars the examples from genetics of eukaryonts, molecular genetics and genetics of populations will be analysed. From a given genetic material every student defines normal and pathological human (female and male) karyotype. Students will microscopically observe cells in different stages of mitotic division. The seminar will be supported by video programmes from genetic counselling offices and from centres for assisted reproduction.
Assessment methods
The whole course is finished by an oral exam – a student answers and explains one theoretical topic from general genetics which he/she has selected from list. Student have to fulfil attendance, submitt and repair all required protocols and pass a test with practiced exercises.
Language of instruction
Czech
Further Comments
Study Materials
The course is also listed under the following terms Autumn 2018, Autumn 2019, autumn 2020, Autumn 2021, Autumn 2022, Autumn 2023.
  • Enrolment Statistics (Autumn 2017, recent)
  • Permalink: https://is.muni.cz/course/ped/autumn2017/BIp025