FC6801 Basics of Advanced Mathematics

Faculty of Education
Autumn 2019
Extent and Intensity
1/1/0. 3 credit(s). Type of Completion: k (colloquium).
Teacher(s)
doc. RNDr. Petr Sládek, CSc. (lecturer)
PhDr. Mgr. Michaela Drexler (lecturer)
Mgr. Renáta Bednárová (seminar tutor)
Guaranteed by
doc. RNDr. Petr Sládek, CSc.
Department of Physics, Chemistry and Vocational Education – Faculty of Education
Contact Person: Jana Jachymiáková
Supplier department: Department of Physics, Chemistry and Vocational Education – Faculty of Education
Timetable of Seminar Groups
FC6801/Kombi01: Sat 5. 10. 12:00–13:50 učebna 3, Sat 12. 10. 12:00–13:50 učebna 3, Sat 19. 10. 16:00–17:50 učebna 3, Sat 7. 12. 10:00–11:50 učebna 3, P. Sládek
FC6801/Prez01: Wed 9:00–9:50 učebna 3, Thu 15:00–15:50 učebna 3, R. Bednárová, P. Sládek
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives
The aim of this course is to obtain a clear knowledge bases of higher mathematics. Emphasis is placed on the logical construction of the science disciplines and to acquire knowledge and skills needed to understand subjects of the study program.
Learning outcomes
After completing the course, students should know and be able to:
- Basic definitions and sentences of the fundamentals of higher mathematics.
- Calculate simple application examples
Syllabus
  • 1. Functions of one variable. Graphs, basic properties of functions, some elementary functions. 2. Linear functions, absolute value. 3. The functions, quadratic, power, fractional linear, exponential, logarithmic 4. Trigonometric functions. 5. The term limits and continuity. 6. Derivation of function, differential function. 7. Concept of primitive functions, indefinite integral. 8. Calculation of indefinite integrals. 9. Determine integral and its calculation. 10. Functions of several variables, differential and integral calculus of several variables. 11. Application of differential calculus. 12. Application of integral calculus.
Literature
  • JIRÁSEK, F., KRIEGELSTEIN, E., TICHÝ, Z.: Sbírka řešených příkladů z matematiky. SNTL, Alfa, Praha 1987.
  • KALAS, Josef and Jaromír KUBEN. Integrální počet funkcí více proměnných. 1. vyd. Brno: Masarykova univerzita, 2009, vi, 272. ISBN 9788021049758. info
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné reálné proměnné. Vyd. 1. Brno: Masarykova univerzita v Brně, 2005, 93 s. ISBN 8021038500. info
  • NOVÁK, Vítězslav. Diferenciální počet funkcí jedné reálné proměnné. 1. vyd. Brno: Masarykova univerzita v Brně, 2004, 158 s. ISBN 802103386X. info
Teaching methods
lecture
Assessment methods
Credit test - written and oral.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
Information on the extent and intensity of the course: 8 hodin.
Teacher's information
http://amper.ped.muni.cz/sladek
The course is also listed under the following terms Autumn 2017, Autumn 2018, autumn 2020, Autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2019, recent)
  • Permalink: https://is.muni.cz/course/ped/autumn2019/FC6801