PřF:Bi1122 Statistics in R - Course Information
Bi1122 Statistical analysis of experimental data in R
Faculty of ScienceAutumn 2025
- Extent and Intensity
- 1/0/0. 1 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- Mgr. Petra Ovesná, Ph.D. (lecturer)
- Guaranteed by
- Mgr. Petra Ovesná, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Petra Ovesná, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 14:00–14:50 B09/316
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Physiology (programme PřF, N-EBZ)
- Immunology (programme PřF, N-EBZ)
- Developmental Biology (programme PřF, N-EBZ)
- Course objectives
- The aim of the course is to familiarize the students with the logic of biological experiments - how the setup and design of these experiments must correspond with their aims, with the usage of appropriate statistical treatment of the data and with interpretation of results.
- Learning outcomes
- At the end of the course the students are able to:
- set up experimental design suitable for specified purpose;
- select appropriate statistical treatment for the data and experimental design;
- test hypotheses using statistical tests or models in R software;
- generalize, interpret and present the results of statistical tests using an adequate form. - Syllabus
- - Data organization for statistical analysis in R.
- - Data import from spreadsheets. Variable types, statistical distributions, quantiles.
- - Hypotheses testing, null and alternative hypothesis, I. and II. error type.
- - General linear model – applications, assumption checking, interpretation by type of explanatory variable.
- - Multiple linear model with fixed effects, interactions, model simplification.
- - Mixed-effects models for correlated data.
- - Generalized linear models with Gamma distribution.
- - Generalized linear models with Poisson distribution.
- - Logistic regression, odds ratio.
- - Experimental design, selecting of appropriate statistical method.
- Literature
- LEPŠ, Jan. Biostatistika. Vyd. 1. České Budějovice: Jihočeská universita, 1996, 165 s. ISBN 8070401540. info
- SOKAL, Robert R. and F. James ROHLF. Biometry : the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887. ISBN 0716724111. info
- PEKÁR, Stanislav and Marek BRABEC. Moderní analýza biologických dat 1 - 1. díl. Zobecněné lineární modely v prostředí R. 2. přepracované vydání. Brno: Masarykova univerzita, 2020, 278 pp. ISBN 978-80-210-9622-6. info
- PEKÁR, Stanislav and Marek BRABEC. Moderní analýza biologických dat 2. Lineární modely s korelacemi v prostředí R (Modern Analysis of Biological Data 2. Linear Models with Correlations in R). 1st ed. Brno: Masarykova universita, 2012, 256 pp. ISBN 978-80-210-5812-5. info
- Teaching methods
- Lectures focused on theoretical aspects, which will be trained in the practical course.
- Assessment methods
- The exam is based on the practical statistical treatment of sets of experimental data, covering the methods presented at the course. Selection and justification of an method used is an integral part of the exam. For all calculations the R software is used.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on course enrolment limitations: Na předmět se vztahuje povinnost registrace; bez registrace může být znemožněn zápis předmětu!
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/sci/autumn2025/Bi1122