Lineární algebra a geometrie I

Požadavky ke zkoušce, příklady zkouškových písemek

Požadavky ke zkoušce

Zkouška z lineární algebry má tři části:

1. Krátké písemky v průběhu semestru se píšou na cvičeních. Je jich 8 a můžete z nich získat 16 bodů. Kdo získá aspoň 8 bodů, postupuje k další části zkoušky. Ostatní mají možnost psát opravnou písemku na začátku zkouškového období. K postupu je potřeba získat aspoň polovinu z celkového počtu bodů.

2. Zkoušková písemka má část početní a část teoretickou. Početní část se skládá ze 4 standardních úloh podobných těm, které se řešily na cvičeních. Za každou je možno získat 3 body. Teoretická část je tvořena 10 otázkami na definice, příklady, věty, krátké důkazy a jednoduchými úkoly, které lze rychle vyřešit použitím definice. Za každou otázku je možno získat 1 bod. K bodům za početní část se přičte číslo (počet bodů získaných z krátkých písemek - 8)/2, v případě, že je toto číslo kladné. K tomu, abyste postoupili k ústní zkoušce, potřebujete získat z početní části aspoň 7 bodů a z teoretické části aspoň 5 bodů. Na písemku budete mít dvě a půl hodiny času. Nedostatek času nebývá důvodem, proč studenti písemku nenapíší. Řešení pište přehledně a srozumitelně, doprovoďte ho stručným komentářem, který vyjasní, co počítáte. Rovněž výsledek vašich výpočtů by měl být jasně vyznačen.

U každého zkouškového termínu se budu snažit po opravě písemky a před ústní zkouškou ukázat, jak má správné řešení vypadat. Potom si budete moci svou opravenou písemku prohlédnout. Doporučuji těm, kteří písemku nenapíší na stanovený počet bodů, aby této možnosti využili.

3. Ústní zkouška. U ní si vylosujete 2 otázky, po krátké písemné přípravě (10 až 15 minut) na ně budete odpovídat (opět 10 až 15 minut). Obvykle dávám hodně doplňujících otázek. Kladu důraz na porozumění, nestačí mi znalost definic a vět, chci příklady na definované pojmy a hlavní věty. Požaduji schopnost provádět jednoduché důkazy. Zde je seznam témat, které vyžaduji bezpodmínečně. Jejich neznalost znamená, že u zkoušky neuspějete:
1. Pojem vektorového prostoru, znalost příkladů.
2. Pojem vektorového podprostoru, příklady, součet a průnik.
3. Pojem lineární nezávislosti vektorů, příklady.
4. Pojem lineárního obalu, příklady.
5. Vysvětlení algoritmu, který ze seznamu vektorů vybere lineárně nezávislé se stejným lineárním obalem.
6. Báze vektorového prostoru, souřadnice vektoru v dané bázi, dimenze, příklady.
7. Lineární zobrazení, jádro, obraz, příklady.
8. Hodnost matice.
9. Řešení soustav lineárních rovnic, věty o struktuře řešení, příklady na tyto věty.
10. Definice determinantu, jeho základní vlastnosti.

Příklad zkouškových písemek:
 

Doporučená sbírka s řešenými úlohami:

Sbírka úloh k přednáškám na FI
Sbírka typových úloh vytvořená k dřívější analogické přednášce M. Čadka na FI. Na začátku každé kapitoly je shrnuta základní teorie, následují řešené úlohy, potom úlohy k samostatnému řešení. Výsledky jsou na konci sbírky.

Domácí úlohy

 

Aktuální domácí úkoly
Domácí úkoly k aktuálním cvičením