FSS:MVZb2060 Internet-based Research - Informace o předmětu
MVZb2060 Introduction to Internet-based Research
Fakulta sociálních studiípodzim 2025
- Rozsah
- 2/0/0. 3 kr. Ukončení: zk.
Vyučováno kontaktně - Vyučující
- Ing. Mgr. Adriana Ilavská, Ph.D. (přednášející)
- Garance
- Mgr. Jana Urbanovská, Ph.D.
Katedra mezinárodních vztahů a evropských studií – Fakulta sociálních studií
Dodavatelské pracoviště: Katedra mezinárodních vztahů a evropských studií – Fakulta sociálních studií - Rozvrh
- Čt 10:00–11:40 U34
- Předpoklady
- This course is offered in English with all readings and discussions in this language.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 8 mateřských oborů, zobrazit
- Cíle předmětu
- The primary goals of this course are to develop students’ practical skills in efficiently utilizing online data sources and databases relevant to International Relations and European Studies. The course aims to strengthen students’ ability to conduct independent, data-driven research by providing them with hands-on experience in navigating and critically assessing these resources. A further goal is to introduce students to the role of Artificial Intelligence in academic research, focusing both on effective use of AI tools and on the ethical considerations necessary for their responsible integration into the research process.
- Výstupy z učení
- Upon successful completion of this course, students will be able to:
- Identify, access, and effectively use a variety of online databases for both primary and secondary sources.
- Formulate effective search queries and apply advanced search techniques to retrieve relevant information.
- Critically evaluate the reliability, credibility, and limitations of diverse sources, including those generated by AI.
- Employ AI tools to support different stages of research process(specifying research problem, literature review, analysing data, presentation), while reflecting on their opportunities and risks.
- Design and carry out a small-scale research project that integrates secondary and primary data and present its findings clearly and effectively. - Osnova
- 1. Introduction to the Course: How the Internet (and AI) Changed Research in IR
- 2. Secondary Data: Role in the Research Process and Key Databases
- 3. Search Strategies: Building Smarter Search Queries
- 4. AI in Research: From Brainstorming to Research Questions
- 5. AI Tools for Literature Reviews
- 6. Evaluating Reliability and Credibility of Online Sources
- 7. Midterm Test: Practical Skills in Secondary Data Research
- 8. Primary Data: Accessing and Using Qualitative Sources
- 9. Primary Data: Accessing and Using Quantitative Sources
- 10. Producing Own Data with AI Support
- 11. Presenting Research Results with Digital and AI-Enhanced Tools
- 12. Student Project Presentations I
- 13. Student Project Presentations II
- Literatura
- povinná literatura
- The Sage handbook of qualitative research. Edited by Norman K. Denzin - Yvonna S. Lincoln - Michael D. Giardina - Gaile Slo. Sixth edition. Los Angeles: Sage, 2024, lviii, 741. ISBN 9781071836743. info
- NORTHEY, Margot; Lorne TEPPERMAN a Patrizia ALBANESE. Making sense : a student's guide to research and writing : social sciences. Eight edition. Don Mills, Ontario: Oxford University Press, 2023, vii, 324. ISBN 9780190164355. info
- MILLER, Jane E. Making sense of numbers : quantitative reasoning for social research. Los Angeles: Sage, 2022, xxxvi, 569. ISBN 9781544355597. info
- Výukové metody
- The teaching will take the form of interactive lectures that will provide a short introduction to the topic and will be followed by practical examples and discussion.
- Metody hodnocení
- The final assessment consists of three components.
1. The midterm test (up to 10 points) is conducted via the Information System and focuses on practical skills from the first half of the course.
2. The final project (up to 35 points) requires students to design and present a small-scale research project that combines secondary and primary data while also demonstrating critical use of digital and AI tools.
3. Class activity (up to 5 points).
Grading Scale:
A: 47–50 points
B: 42–46 points
C: 38–41 points
D: 34–37 points
E: 30–33 points
F: 0–29 points - Náhradní absolvování
- Students participating in Erasmus or other study-abroad programs can complete this course without difficulty. Attendance at lectures is not mandatory, and the midterm test is conducted online through the Information System. The final project can be presented remotely via Zoom or MS Teams.
- Vyučovací jazyk
- Angličtina
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (nejnovější)
- Permalink: https://is.muni.cz/predmet/fss/podzim2025/MVZb2060